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Abstract 

This paper employs the equity (VIX) and Treasury (MOVE) risk-neutral volatilities to 

assess their relative forecasting performance with respect to future real activity, stock 

and Treasury excess returns, and aggregate risk factors. The in-sample evidence 

suggests that the square of VIX tends to dominate the square of MOVE. The out-of-

sample predicting analysis, which is performed as a horse race between equity and 

Treasury risk-neutral volatilities shows that, contrary to the previous results, both the 

square of VIX and MOVE tend to complement each other. 
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1. Introduction 

The VIX index is the risk-neutral one-month expected stock market volatility for the 

U.S. S&P500 index. It is computed by averaging the weighted prices of puts and calls 

on the S&P500 index over a wide range of strike prices.  It has become an extremely 

popular and useful measure of near-term market volatility. It is surprising that the extant 

and large literature on implied volatility has almost exclusively engaged on equity 

markets.1  

Indeed, by noting the lack of evidence about the relative importance between 

risk-neutral equity and Treasury volatilities, the main contribution of this paper is to fill 

partially this gap by analyzing the forecasting performance of both types of risk-neutral 

volatilities. Specifically, we perform an in-sample, and a competing out-of-sample 

forecasting analysis between VIX and the Treasury risk-neutral volatility regarding 

future real activity, as well as future financial returns. This may be especially 

informative given the recent findings of Gonzalez-Urteaga, Nieto and Rubio (2018). 

They study the connectedness dynamics between both types of risk-neutral volatilities, 

and show that most of the time, but especially during bad economic times, the Treasury 

risk-neutral volatility is a net sender of volatility to VIX. They also detect that both 

monetary policy and economic drivers explain the spillover dynamics between both 

risk-neutral volatilities. 

We employ the MOVE index, which is the Merrill Lynch Option Volatility 

Estimate Index, as the Treasuries implied volatility. It is a term structure index of the 

normalized implied volatility on one-month Treasury options which are weighted on the 

                                                           
1 Notable exceptions are Choi, Mueller, and Vedolin (2017) and Mueller, Sabtchevsky, Vedolin, and 

Whelan (2016), who analyze the market variance risk premium in both equity and Treasury markets, and 

Mele, Obauashi, and Shalen (2015), who study the information contained in VIX and the interest rate 

swap rate volatility index known as SRVX.  
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2, 5, 10, and 30-year contracts. It is therefore the equivalent of VIX for Treasury bond 

returns and reflects the market-based measure of uncertainty about the composite future 

behavior of interest rates across different maturities of the yield curve. Current increases 

in MOVE suggests that the market is willing to pay more for hedging against 

unexpected movement in interest rates. 

Given the evidence reported by Adrian, Crump, and Vogt (2018) pointing out 

the importance of nonlinearities, our analysis of forecasting employs the square of VIX 

and MOVE rather than the volatilities themselves. The in-sample relative forecasting 

ability of VIX2 and MOVE2 suggests that VIX2 tends to dominate MOVE2 in both real 

activity and financial returns. Although, it is important to recall that González-Urteaga 

et al. (2018) show that MOVE is a net contributor of volatility to VIX. This transmitted 

information may be helping VIX in improving its forecasting capacity of future output 

and financial returns. 

On the other hand, the out-of-sample forecasting improvement of VIX2 over 

MOVE2 and vice versa is mixed when predicting either real activity, the stock market, 

or Treasury bond returns. Both VIX2 and MOVE2 complement each other in these 

forecasting exercises. However, VIX2 tends to outperform MOVE2 when forecasting 

aggregate risk factors on out-of-sample basis.  

This paper proceeds as follows. Section 2 presents a brief discussion of the 

behavior of VIX and MOVE and describes the data employed in the analysis. Section 3 

describes the decomposition of VIX and MOVE into their uncertainty and risk aversion 

components. Section 4 presents the in-sample predicting ability of equity and Treasury 

risk-neutral volatilities, while Section 5 contains the out-of-sample forecasting analysis. 
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Finally, Section 6 presents our conclusions. The Appendix shows the detailed out-of-

sample forecasting results. 

2. Data and a Preliminary Analysis of VIX and MOVE 

We collected daily and monthly data for VIX and MOVE from April 4, 1988 to October 

5, 2017, where the monthly data refers to the last observation in each month throughout 

the sample period.2   

Figure 1 shows the annualized daily behavior of VIX and MOVE. As expected, 

risk-neutral volatilities are countercyclical, and the spikes during economic crisis are 

much larger in equity than in Treasury volatilities. On daily basis, the minimum (9.2%) 

and maximum (80.9%) levels for VIX were reached on October 5, 2017 and November 

20, 2008, respectively, whereas for MOVE the minimum (4.7%) and maximum (26.5%) 

were observed in August 7, 2017 and October 10, 2008, respectively. In Figure 2, we 

show how volatile VIX and MOVE are. It displays the monthly volatility of both risk-

neutral volatilities estimated with daily data within each month in our sample. It is a 

measure of financial uncertainty in the equity and Treasury bond markets, respectively. 

As expected, VIX seems to be much more volatile than MOVE with much larger spikes 

during bad news economic times.  

Table 1 contains summary statistics for VIX and MOVE obtained from monthly 

data from April 1988 to September 2017 using observations on the last day of the 

month. During the full sample period, the average risk-neutral volatility for the stock 

                                                           
2 VIX was downloaded from www.cboe.com and MOVE from Bloomberg. Since MOVE is available 

from April 1988, we employ VXO (the risk-neutral market volatility for the U.S. S&P100 index) from 

April 1988 to December 1989. Starting in January 2003, the CBOE launched the 10-year Treasury Note 

Volatility Index (TYVIX), which measures a constant 30-day risk-neutral expected volatility on 10-year 

Treasury Note futures prices. Given that MOVE is available for a much longer sample period, this 

research employs MOVE rather than TYVIX. The correlation between both series using monthly data 

(the quote in the last day of each month) from January 2003 to September 2017 is 0.953.  

 

http://www.cboe.com/
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market is 19.5%, whereas the risk-neutral volatility for Treasuries is much lower and 

equal to 9.7% approximately. VIX is also much more volatile than MOVE, and 

similarly, the range between the minimum and maximum values moves from 9.5% to 

59.9% for VIX whereas it goes from 4.8% to 21.4% for MOVE.3 VIX presents much 

higher positive skewness and kurtosis than MOVE. Finally, both implies volatilities are 

highly persistent with autocorrelation coefficients of 0.84 and 0.85 for VIX and MOVE, 

respectively.  

We next describe the data used in the forecasting analysis. All the competing or 

control variables that we employ together with VIX and MOVE have been shown to be 

strong predictors in previous literature. We employ two variables regarding the behavior 

of interest rates. First, the slope of the term structure denoted as TERM, which is the 

difference between the yield of the 10-year government bond and the 3-month Treasury 

bill rate. TERM is one of the most popular forecasting instruments of real activity. 

Increases in the slope of the term structure have been shown to predict higher future 

growth rates of economic activity, whereas decreases in the slope tend to predict bad 

economic times.4 Moreover, Choi et al. (2017) employ an options panel data set on 

Treasury futures to show that the term structure of risk-neutral variances is downward 

sloping and significantly related to economic conditions. Given that MOVE includes 

data on 2, 5, 10, and 30-year contracts, it seems reasonable to include TERM in the 

regression model. Second, to consider inflation risk, we employ the expected inflation 

for a one-year horizon denoted as EINF. It is downloaded from the Federal Reserve 

Bank of Cleveland. Their model employs Treasury yields, inflation rate data, inflation 

swaps, and survey-based measures of future inflation to estimate expected inflation to 

                                                           
3 To be precise, the coefficients of variation are 0.38 and 0.27 for VIX and MOVE, respectively. 

4 Among many others, see Stock and Watson (2003). 
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alternative horizons. In this research, EINF is employed as one the key variables to 

obtain the expected (physical) future variance of Treasury bond returns. In other words, 

it is a variable used to estimate the uncertainty component of MOVE rather than a direct 

predictor of future real activity or financial returns.  

Regarding credit risk, Gilchrist and Zakrajsek (2012) show the forecasting power 

of the term structure of credit spreads for future output growth. These authors argue that 

there is a pure credit component orthogonal to macroeconomic conditions that accounts 

for a large part of the predicting capacity of credit spreads. Given that we work with 

risk-neutral volatilities, it is also important to note that González-Urteaga and Rubio 

(2016) show that the default premium, denoted as DEF, is a key factor explaining the 

cross-sectional variation of equity volatility risk premia. It seems therefore natural to 

employ the default spread, calculated as the difference between Moody´s yield on Baa 

corporate bonds and the 10-year government bond yield, as a potentially relevant 

control variable. Both yields are obtained from the Federal Reserve Statistical Release.   

The most popular predictor, at least of future equity returns, is the aggregate 

dividend yield, which we denote as DY. As discussed by Cochrane (2011), the time-

varying behavior of the expected market risk premium has a clear correlation with the 

business cycle. He shows that, indeed, the DY is a strong forecaster of the future market 

risk premium and, therefore, it becomes a potential state variable for forecasting real 

activity.5 We also employ the Hansen–Jagannathan (1991) volatility bound, denoted as 

HJ VOL, as an additional predictor. Nieto and Rubio (2014) propose how to extract 

future real activity information from optimally combined size-sorted portfolios. 

Specifically, they show that a size-based volatility bound of the stochastic discount 

                                                           
5 The dividend yield in logs is computed from the original series on Robert Shiller’s website 

(http://www.econ.yale.edu/~shiller/). 

http://www.econ.yale.edu/~shiller/
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factor is a powerful in-sample and out-of-sample predictor of future industrial 

production growth. Finally, given the discussion of Brunnermeier and Pedersen (2009), 

we propose TED as a proxy for funding liquidity, and as an additional predictor 

variable. TED is the spread between the 3-month LIBOR based on U.S. dollars and 3-

month Treasury Bill. 

We also collect data on the variables to be predicted. As a measure of real 

economic activity, we employ monthly data of the Industrial Production Index (IPI). 

These data are downloaded from the Federal Reserve, with series identifier G17/IP 

Major Industry Groups. We obtain data on the excess return of the composite index of 

5-, 10-, and 30-year horizons of Treasury bonds, denoted as TRYRET, which is 

downloaded from https://fred.stlouisfed.org/.  

In addition, we study the forecasting ability of VIX and MOVE with respect to the 

aggregate risk factors from the Fama and French (2015) five-factor model, which 

expands their popular three-factor model with profitability (robust minus weak, RMW) 

and investment (aggressive minus conservative, CMA) factors. We denote the excess 

market portfolio return as EXCMKET, and the size and value factors as SMB and HML, 

respectively. Moreover, given that they are not able to explain the cross-sectional 

variability of momentum portfolios unless Carhart’s (1997) momentum factor (MOM) is 

included in the cross section, we consider this factor in our analysis.  We collect these 

monthly data from Kenneth French’s website (http://mba.tuck.darmouth.edu).  

We also use the Quality minus Junk (QMJ) factor of Asness, Frazzini, and 

Pedersen (2014), further explored by Asness, Frazzini, Israel, Moskowitz, and Pedersen 

(2018). These authors define a quality stock as an asset for which an investor would be 

willing to pay a higher price. These are stocks that are safe (low required rate of return), 

https://fred.stlouisfed.org/
http://mba.tuck.darmouth.edu/
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profitable (high return on equity), growing (high cash flow growth), and well managed 

(high dividend payout ratio). Asness et al. (2014) show that the QMJ factor, which buys 

high-quality stocks and shorts low-quality (junk) stocks, earns significant risk-adjusted 

returns not only in the U.S. market but also in 24 other countries. The QMJ factor is 

downloaded from the AQR Capital Management Database (www.aqr.com).   

Finally, recent empirical evidence supports the presence of funding liquidity 

across a wide range of securities. Frazzini and Pedersen (2014) show that leverage 

constraints are strong and significantly reflected in the return differential between 

leveraged low-beta stocks and de-leveraged high-beta stocks. The authors argue that the 

positive and highly significant risk-adjusted returns relative to traditional asset pricing 

models shown by portfolios sorted by the level of market beta are explained by shadow 

cost-of-borrowing constraints.6 The authors illustrate their argument by proposing a 

market neutral BAB factor consisting of the difference between long-leveraged low-beta 

stocks and short de-leveraged high-beta securities. This factor is downloaded from the 

AQR Capital Management Database.  

3. A Simple Decomposition of Risk-Neutral Equity and Treasury Variances  

As discussed by Bekaert and Hoerova (2014), the squared VIX reflects both stock 

market uncertainty and risk aversion. Uncertainty is captured by the physical expected 

variance, while risk aversion is proxied by the variance risk premium (VRP), which is 

the expected risk premium from selling equity variance in swap contracts. The equity 

variance risk premium is defined as 

                                             ( )E P E 2
t t t 1 tVRP E RVAR VIX ,+= −                                        (1) 

                                                           
6 See also Asness, Frazzini, Gormsen, and Pedersen (2018) for additional evidence supporting this 

argument. 

http://www.aqr.com/
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where 
E

tVRP  is the equity variance risk premium, and ( )P E
t t 1E RVAR +  is the expected 

conditional value of the future realized variance of equity returns under the physical 

probability P.  

There is an extensive literature using these components as potential predictors of 

stock markets returns and industrial production growth. Bollerslev, Tauchen and Zhou 

(2009) show that the variance risk premium predicts future stock returns, and Bekaert 

and Hoerova (2014), using an improved model specification of volatility, show that the 

variance risk premium (risk aversion) has predictive power of future equity returns, but 

real activity is significantly predicted by the conditional stock market variance 

(uncertainty). Indeed, in bivariate regressions using both the VRP and the conditional 

variance, they show that the VRP is an overall better predictor of future stock returns 

than the conditional variance, and that the squared of VIX fails to forecast future 

returns. On the other hand, opposite results are reported when predicting future real 

activity. The expected conditional variance is a stronger predictor of future production 

growth. More recently, Fan, Xiao, and Zhou (2018) propose a decomposition of the 

equity VRP into a pure second order VRP and a higher order risk premium. It turns out 

that the VRP displays short-term predictive power for future returns, but the higher 

order risk premium contains a medium-term forecasting ability. More importantly, this 

decomposition improves the market return forecasting both in-sample and out-of-

sample. Finally, when predicting either real activity or financial returns, it is important 

to employ the risk-neutral variance of market equity as predictor rather than volatility 

itself. Adrian, Crump, and Vogt (2017) argue that VIX strongly forecasts stock and 

bond returns up to 24 month-horizon when the nonlinearity is accounted for. This result 

may be associated with the recent findings of Danielsson, Valenzuela, and Zer (2018), 
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who argue that volatility itself is not a significant predictor of financial crises, but 

unusually high and low volatilities are. 

Under the same arguments, the Treasury VRP is defined as 

                                            ( )T P T 2
t t t 1 tVRP E RVAR MOVE ,+= −                                    (2) 

where 
T
tVRP  is the Treasury variance risk premium, and ( )P T

t t 1E RVAR +  is the expected 

conditional value of the future realized variance of (composite) Treasury returns under 

the physical probability P.  

In a parallel research to the literature of the equity variance risk premium and 

using their own data on risk-neutral variance of Treasury returns, Choi et al. (2017) 

show that the term structure of implied Treasury variances is downward sloping, and 

that the slope has predictive power for future real activity at short horizons. Moreover, 

Mueller et al. (2016) report that short-term 
T
tVRP predicts future bond returns at short-

term horizons, and long-term 
T
tVRP  forecasts bond returns at longer horizons.  

We next decompose risk-neutral variances into expected physical variances and 

the variance risk premium. There is a huge literature on the econometrics of volatility 

forecasting. Rather than using high-frequency data and jumps in the spirit of Andersen, 

Bollerslev, and Diebold (2007), and the threshold bipower variation proposed by Corsi, 

Pirino, and Renò (2010), we follow a simple but powerful approach suggested by Zhou 

(2018) in which the square of VIX and the past realized variances are employed as 

independent variables. Therefore, for the case of the expected realized variance of 

equity returns we forecast future realized variance as: 
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( )E 2 E
t t 1 0 1 t 2 t

ˆ ˆ ˆÊ RVAR VIX RVAR  + = + + .                               (3) 

In our sample period, simple regressions show that these two predictors explain 

approximately 85% of the variability of future realized equity variance. 

We follow a similar approach for the expected realized variance of Treasury 

returns. In this case, however, we also add the expected (one year-horizon) inflation, 

which we find to be a powerful predictor of future realized variance of Treasuries. The 

following model gives the expected (physical) future variance of Treasury bond returns: 

                           ( )T 2 T
t t 1 0 1 t 2 t 3 t

ˆ ˆ ˆ ˆÊ RVAR MOVE RVAR EINF   + = + + + .                  (4) 

In this case, OLS regressions show that the dependent variables explain around 

66% of the variability of future realized variance of Treasury returns. 

Figures 3 displays the conditional variances of equities and Treasury bonds 

using expressions (3) and (4), and Figure 4 the corresponding variance risk premia. 

Although, the recession-associated peaks are clear in both figures, we also observe 

relevant differences among them, which motivates the competing analysis of both types 

of risk-neutral volatilities for forecasting returns and real activity. 

4. The In-Sample Predictability of Real Economic Activity and Financial Returns 

with VIX2 and MOVE2  

Tables 2 to 6 contain the results of forecasting industrial production and several types of 

financial asset returns with one-, 3-, 6-, and 12-month horizons. In all cases we run a 

similar in-sample predicting regression, 

                             t ,t 1 t t t ,tY X Controls , 1,3,6 ,12     + += + + + = ,                    (5) 
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where t ,tY +  is either future real activity growth, t ,tIPI  + , future excess market 

return, t ,tEXCMKET + , future excess Treasury bond return, t ,tTRYRET + , future 

t ,tHML + , or future t ,tBAB + .7 The predictor tX  is either VIX2 or MOVE2 or the 

variance risk premia and the expected realized variances given by equations (1), (2), (3), 

and (4).  All regressions control for the usual predictors employed in literature. We 

include the lagged value of the dependent variable, the TERM and default (DEF) 

spreads, the logarithm of the dividend yield (DY), the TED spread, and the size-based 

model-free Hansen and Jagannathan (1991) volatility bound (HJ VOL). In each panel 

and for each horizon, we employ the set of controls that maximize the R-squared 

statistic. For saving space, we only report the intercept, and the slope estimated 

coefficient, 1 . It is well known that the overlap in the monthly data generates serial 

correlation in the disturbance term that must be corrected when calculating standard 

error. Following Bekaert and Hoerova (2014), we use the Newey-West (1987) HAC 

standard errors that may improve power over the Hodrick (1992) errors as long as we 

select a large number of lags. 

Table 2 shows the forecasting results for the industrial production growth for the 

four alternative horizons. In Panel A of Table 2, we report that the squared of VIX fails 

to predict real activity. However, as in Bekaert and Hoerova (2014), the conditional 

expected realized variance is a significant predictor of production growth with the 

expected negative sign at the shortest horizon, and at the 3-month horizon with an 

adjusted t-statistic of 1.67. Therefore, increases of the conditional equity variance tend 

to decrease real activity at relatively short horizons. On top of that, the equity VRP is 

                                                           
7As discussed later, HML and BAB are the only two risk factors for which VIX and/or MOVE show a 

significant forecasting capacity. To save space, we have decided not to report these results because they 

do not add any relevant information. In any case, all results are available from the authors upon request. 
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also a significant predictor of real activity with the same negative sign at the shortest 

horizon. Indeed, for the one-month horizon, the slope coefficient is estimated with 

relatively more precision than the coefficient for the expected conditional variance. 

Higher equity-related uncertainty and/or risk aversion seem to be associated with a 

decrease in real activity in the short-run. Note that at longer horizons nor VIX2 neither 

its components forecast significantly real activity. However, the R-squared statistic 

increases from 0.20 approximately at the shortest horizon to 0.40 and 0.32 at the 3- and 

6-month horizons, respectively indicating that other instruments contain relevant 

information about future real activity. 

Panel B of Table 2 clearly shows that either MOVE2 or its components fail to 

predict future real activity. At the shortest horizon, the expected variance and the VRP 

have the same signs as in the case of equity variance. However, none of them are 

statistically different from zero. Note that the R-squared value reflects the relative 

importance of the controls employed in each of the regressions. It does not reflect the 

relative predicting ability of VIX2 or MOVE2. It is also important to recall the evidence 

reported by González-Urteaga et al. (2018), who show that the volatility spillovers from 

MOVE to VIX are strong and statistically significant especially during bad economic 

times. Hence, our new evidence suggests that the information content captured from 

MOVE by VIX may be a key source of the embedded signal explaining the forecasting 

ability of the uncertainty and risk aversion components of VIX2. It seems that the 

combined information contained in VIX through its idiosyncratic information and the 

information sent by MOVE to VIX makes the components of VIX to be strong 

forecasters of real activity at relatively short horizons. 

Panels A and B of Table 3 shows the results regarding the future excess market 

return. The risk-neutral variance shows a significant and positive predictive power of 
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future returns at the 6- and 12-month horizon. Therefore, the two components of VIX2 

predict real activity at short horizons with a negative sign, while the expected variance 

component predicts stock returns at medium-long horizons with a positive sign, which 

suggests a positive relation between the conditional variance and expected excess 

returns. This reflects the (theoretically expected) positive sign of the relation between 

risk and return for equity aggregate returns. As for real activity, MOVE2 does not seem 

to be able to predict future equity returns, although the VRP associated with Treasuries 

presents a positive coefficient with a t-statistic of 1.57 at the shortest horizon. Again, 

given the connectedness dynamics evidence reported by González-Urteaga et al. (2018), 

this does not necessarily mean that MOVE does not have relevant information with 

respect to future market returns. 

Panels A and B of Table 4 show the forecasting results of the (composite) 

Treasury excess returns. Neither VIX2 nor MOVE2 are significant predictors of 

Treasury excess returns. However, the equity VRP is a powerful predictor of future 

Treasury returns with negative and statistically significant coefficients at the 3-, 6-, and 

12-month horizons. As before, it seems very plausible that this result may be partially 

due to the spillover information from MOVE to VIX already discussed above. Overall, 

at medium and long horizons, the in-sample results suggest that the expected variance 

of equity forecasts future equity returns, but the equity VRP forecasts Treasury bond 

returns. 

Along this research, we check for the forecasting ability of risk-neutral variances 

regarding well-known aggregate risk factors. We analyze the five Fama-French (2015) 

factors, the momentum (MOM) factor of Carhart (1997), the Quality minus Junk (QMJ) 

factor of Asness et al. (2014), and Asness et al. (2018), and the Betting against Beta 

Factor (BAB) of Frazzini and Pedersen (2014). Overall, risk-neutral variances of either 
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equity or Treasury bonds fail to predict risk factors. However, we find that risk-neutral 

variances do predict both HML and BAB at short horizons. To the best of our 

knowledge, this is the first time that this evidence has been reported. Recall that the 

differences between dynamic market betas of value and growth companies tend to be 

very large during bad economic times, and the BAB factor reflects funding liquidity and 

tends to have highly negative returns in bad times. It is interesting that precisely the 

HML and the BAB factors are the ones for which risk-neutral variances have predictive 

power.  

The results for the HML and BAB factors are shown in Panels A and B of Tables 

5 and 6, respectively. The VIX2 significantly predicts both the HML and BAB factors 

with a negative sign at short horizons. Both results are estimated with high statistical 

precision. Increases in the square of VIX strongly signals future bad times as proxied by 

negative realized returns (or high expected returns) in the HML and BAB factors. 

Interestingly, this holds even though the uncertainty and risk aversion components of 

VIX2 affect very differently HML and BAB. In the case of the HML factor, it is the 

expected variance component (and not the VRP component) that shows forecasting 

ability. However, in the case of the BAB factor, it is the equity VRP component (not the 

expected variance) that has predictive ability. The future behavior of the HML factor 

seems to be related more with uncertainty, while the BAB factor responds more to risk 

aversion.  

On the other hand, MOVE2 fails to predict either HML or BAB. But, the 

Treasury VRP component significantly predicts HML at the shortest and medium 

horizons, and BAB at the 3-month horizon, both with positive signs.  
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5. The Out-of-Sample Predictability of Real Economic Activity and Financial 

Returns with VIX2 and MOVE2: A Comparison Analysis  

In this Section, we describe the tests and discuss the results of the out-of-sample 

forecasts of future real economic activity, and future financial returns for stocks, 

Treasury bonds and the HML and BAB factors using either VIX2 or MOVE2. Which of 

the two risk-neutral volatilities are stronger predictors of future activity and asset 

returns? We employ two alternative statistics to test the out-of-sample accuracy of two 

(VIX2 versus MOVE2) competing models: the t-test proposed by Diebold and Mariano 

(1995) and the F-statistic of McCracken (2007). In our case, the two compared models 

are always nested. The restricted model contains only one predicting variable: either 

VIX2 or MOVE2, or the lagged dependent variable, TERM, DEF, DY, the HJ volatility 

bound, and TED. Given the in-sample forecasting evidence, the predictor is selected 

among the best predictors in that context across all dependent variables and horizons. 

The unrestricted model contains that individual predictor in the restricted model and 

either MOVE2 or VIX2.  

We now briefly describe this methodology. The total sample period contains T + 

P observations, where the initial in-sample estimation period employs information from 

one to T and the out-of-sample forecasting period is from T + τ to T + P, τ being the 

forecasting horizon. At each forecasting period t = T + τ, . . . , T + P, we estimate the 

two competing nested models using information up to the previous τ periods, generate 

the prediction, and compute the forecasting error. More formally, the restricted model is 

                                         
R R

s 1 s RsY X u  ,s 1 ,t ,   −= + + = + −                           (6) 
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where sY is one of the followings: industrial production growth, excess market returns, 

excess Treasury bond returns, HML or BAB, and sX is one of the competing predictors 

including VIX2 or MOVE2. 

The prediction under the restricted model is 

                                                       
R R

Rs 1 s
ˆˆ ˆY X .  −= +                                           (7) 

and the prediction error is 

 Rt t Rt
ˆû Y Y= − .                                                     (8) 

Similarly, the unrestricted model includes the forecasting individual variable in 

the restricted model and either MOVE2 or VIX2, denoted as sZ in the following 

equation:    

                             
U U U

s 1 s 2 s UsY X Z u  ,s 1 ,t .     − −= + + + = + −                    (9) 

The unrestricted prediction and forecasting error are 

                                
U U U

Us 1 s 2 s
ˆ ˆˆ ˆY X Z ,   − −= + +                                 (10) 

                                                        Ut t Ut
ˆû Y Y ,= −                                                        (11) 

where sZ is any of the competing predictors including VIX2 and MOVE2. We next 

compute the vector of loss differentials, denoted d, which compares the two square 

errors at each month t and the mean-squared forecasting error (MSE) for each model: 

 
2 2

t Rt Utˆ ˆd u u  , t T T P = − = + + ,                                    (12) 

( )
T P

1 2
R Rt

t T

ˆMSE P 1 u




+

−

= +

= − +  ,                                       (13) 

( )
T P

1 2
U Ut

t T

ˆMSE P 1 u




+

−

= +

= − +  .                                      (14) 
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The two statistics for testing equal forecasting accuracy have the null that the 

loss differentials are zero, on average. The Diebold–Mariano (1995) statistic is a t-test 

expressed as 

( )
1 2

d

d
MSE( t ) P 1

Ŝ


−
= − + ,                                       (15) 

where ( )
T P

1
t

t T

d P 1 d




+

−

= +

= − +   and dŜ  is a consistent estimator of the variance of the 

loss differential that admits heteroskedasticity and autocorrelation. We employ the 

Newey–West (1987) specification and, following Clark and McCracken (2012), a lag 

length k 1.5 = . Hence 

( ) ( )( )
k T P

1
d t t j

j k t T

k  j 
Ŝ P j 1 d d d d

k



+

−
−

=− = +

 − 
= − − + − − 

 
  .           (16) 

The McCracken (2007) statistic is an F-test given by 

      ( ) R U

U

MSE MSE
MSE( F ) P 1

MSE


−
= − + .                                (17) 

It must be noted that the loss differentials are measured with an error since the 

beta coefficients are unknown. This implies that the exact distribution of both statistics 

is also unknown and that the asymptotic distribution can only be obtained under 

restrictive assumptions that include non-nested models.8 For the case of nested models, 

Clark and McCracken (2012) suggest deriving the asymptotic distribution by a fixed 

regressor bootstrap and show that the test statistics based on the proposed bootstrap 

have good size properties and better finite-sample power than alternative bootstraps. 

This method is based on the wild fixed regressor bootstrap developed by Gonçalves and 

                                                           
8 See West (1996) and Clark and McCracken (2001) for a discussion.  
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Killian (2004) but adapted to the multi-step framework of out-of-sample forecasts. To 

implement this method, we use the followings steps: 

1. We estimate both the restricted and unrestricted models using the full sample 

period. We save the coefficients of the restricted model and compute the residuals 

from the unrestricted model: 

U U U
Ut t 1 s 2 s

ˆ ˆˆû Y X Z  , t 1 T P    − −= − − − = + + . 

2. We assume and estimate an MA (τ – 1) process to capture the implicit serial 

correlation in the residuals from a τ-step-ahead forecast, 

( )Ut t 1 t 1 1 t 1û + + , t 1 T P      − − − −= + = + + . 

3. We simulate a sequence of independent and identically distributed N(0,1) random 

variables denoted by t  and generate artificial residuals by using the estimates of 

the MA process: 

( ) ( )
*
Ut t t 1 t 1 t 1 1 t 1 t 1

ˆ ˆˆ ˆ ˆû + + , t 1 T P          − − − − − − −= + = + + . 

4. We simulate an artificial series of the dependent variable using the artificial 

residual and imposing the null hypothesis that the additional variable, sZ , does 

not predict: 

* R R *
t 1 s Ut

ˆˆ ˆY X +u  , t 2 1 T P  −= + = + + . 

5. We compute both the MSE(t)-statistics and MSE(F)-statistics using these artificial 

data as if they were the original data. 

6. We repeat steps 3 to 5 5,000 times and the p-value is the percentage of times the 

simulated statistic is greater than the real statistic. 

Our purpose is not to do a general horse race to decide which is the best 

predicting model, but we are interested in the forecasting performance of VIX2 versus 
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MOVE2. Our purpose is not to do a general horse race to decide which is the best 

predicting model. Therefore, we concentrate on the predicting competency of the equity 

and Treasury risk-neutral variances. Table 7 contains a summary of the out-of-sample 

comparative results between VIX2 and MOVE2. We employ the relative mean squared 

error suggested by Clark and McCracken (2012), which is given by 

U RRMSE MSE MSE= , where the restricted and unrestricted MSE are given by 

equations (13) and (14), respectively. We also report the p-values associated with the 

null that the t-based MSE or the F-based MSE of expressions (15) and (17) are equal to 

zero, respectively. When the RMSE statistic is significantly less than one implies that 

the inclusion of either VIX2 or MOVE2 improves the out-of-sample forecasting capacity 

of the competing predictor. 

Panel A of Table 7 shows the out-of-sample forecasting exercise of future real 

activity. At the shortest horizon, neither VIX2 nor MOVE2 significantly outperforms the 

other. However, both volatilities are equally necessary to forecast at the 3- and 6-month 

horizons, and both fail to improve prediction of industrial production growth over each 

other at the longest horizon. Note that at the 12-month horizon, the p-value of the t-

statistic indicates that we can reject that both forecasting errors are equal, but the 

inclusion of MOVE2 in addition to VIX2 make the forecasting errors to be higher since 

RMSE is larger than one. Panel B of Table 7 shows that at the shortest horizon and at 

the 10% level, MOVE2 better predicts future stock market excess returns than VIX2. 

This is an important result. Recall that in bad economic times, the directional 

connectedness from MOVE to VIX dominates the effects of VIX over MOVE. 

However, for the rest of the horizons, both risk-neutral volatilities are equally relevant. 

On the contrary, in Panel C of Table 7 and regarding Treasury excess returns, VIX2 

significantly improves the prediction over MOVE2 at the shortest horizon but, at the 
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longest horizon, the opposite results is obtained. MOVE2 is a superior predictor of 

Treasury returns at the 12-month horizon. In Panel D, we show that VIX2 significantly 

outperforms MOVE2 when predicting HML at the 3-month horizon, but there is nothing 

statistically significant over and above this result. Finally, in Panel D of Table 7, we 

show that VIX2 significantly improves the forecasting of the BAB over MOVE2 for 

both, the shortest and longest horizons. This result suggests that funding liquidity, as 

proxied by BAB, is closely related to the previous behavior of the stock market risk-

neutral volatility, at least for extreme horizons. Overall, VIX2 significantly outperforms 

MOVE2 in 4 out of 20 cases, while MOVE2 improves VIX2 only in 2 cases. VIX2 

(relative to MOVE2) is a necessary predictor in 45% of the cases, and MOVE2 (relative 

to VIX2) in 25% of all possibilities. The only obvious advantage of VIX2 over MOVE2 

seems to be concentrated on forecasting the HML and BAB risk factors.9  

6. Conclusions  

The empirical evidence regarding the relative forecasting ability between the equity 

risk-neutral variance and the Treasury risk-neutral variances is surprisingly scarce. This 

paper contributes to literature by performing a competing forecasting analysis between 

both implied variances. The in-sample analysis shows that VIX2 dominates MOVE2 

either directly or indirectly through its uncertainty and risk aversion components. At the 

shortest horizon, increases in the expected conditional variance of equity returns and/or 

its variance risk premium are associated with a future decrease in real activity, while we 

find a significant opposite sign with respect to future market returns at long horizons. 

Similar to real activity, increases in the variance risk premium of equity returns 

decreases Treasury returns at the three longest horizons. Interestingly, given the 

                                                           
9 The detailed out-of-sample forecasting results using the procedure described above are reported in 

Tables A.1 through A.5 in Appendix. 



22 

 

 

counter-cyclical variation of the HML and BAB factors, we find that VIX2 and its 

uncertainty component are significant forecasters of both factors but with the opposite 

sign to the one reported for the market excess returns, and at short rather than at long 

horizons. Both VIX2 and its expected conditional variance component have a negative 

relation with the future behavior of HML, and VIX2 also has a significant and negative 

relation with future returns of the BAB portfolio. Once again, this is the case at the 

shortest horizons. Moreover, the equity variance risk premium has a positive correlation 

with the future behavior of the BAB factor, while the Treasury variance risk premium 

has a positive relation with the future behavior of both the HML and BAB factors. 

On the other hand, our out-of-sample predicting exercise shows that, overall, for 

future real activity and future excess market returns, and for most of the horizons, both 

VIX2 and MOVE2 complement each other. Both risk-neutral volatilities seem to be 

important when using an out-of-sample framework, at least regarding real activity and 

market returns. Neither one seems to dominate the other in terms of the out-of-sample 

predictability of future real activity.  VIX2 improves the forecasting of Treasury bond 

returns at the shortest horizon, while MOVE2 improves the forecasting capacity of the 

stock market and Treasury bond returns at the shortest and longest horizons, 

respectively. Note that González-Urteaga et al. (2018) report that the total unconditional 

connectedness from 1988 to 2017 between VIX and MOVE is 28%, which suggests 

that, on average, there are idiosyncratic components that may explain our out-of-sample 

forecasting results in terms of the complementary results between both implied 

volatilities. It is true that with respect to aggregate risk factors, VIX2 is the only risk-

neutral volatility with some out-of-sample forecasting capacity.  

Future research may analyze how the spillover connectedness dynamics reported 

by González-Urteaga et al. (2018) affect specifically our forecasting results. In other 
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words, given that MOVE is a net sender of volatility to VIX, it would be important to 

study the consequences of this result for the forecasting ability of these risk-neutral 

variances. More precisely, it would be interesting to find out what is the percentage of 

the total predicting capacity of the square of VIX due to the risk-neutral volatility 

transmission received from MOVE. 
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Table 1. Summary Statistics VIX and MOVE. April 1988-September 2017 

 VIX MOVE  

Mean 0.1949 0.0965  

Volatility 0.0731 0.0259  

Minimum 0.0951 0.0481  

Maximum 0.5989 0.2140  

Skewness 1.7367 0.9999  

Kurtosis 4.8872 2.6046  

AR(1) 0.8405 0.8539  

The VIX index is the risk-neutral one-month expected stock market volatility for the US S&P500 index. 

It is computed by averaging the weighted prices of puts and calls on the S&P500 index over a wide range 

of strike prices. The MOVE index is the Merrill Lynch Option Volatility Estimate Index. It is a term 

structure weighted index of the normalized implied volatility on one-month Treasury options, which are 

weighted on the 2, 5, 10, and 30-year contracts. The statistics employ monthly data and observations on 

the last day of the month. 
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Table 2.  In-Sample Forecasting of Industrial Production Growth for Alternative Horizons with 

Statistically Significant Controls. Risk-Neutral Variance and its Components, May 1988-June 

2017. 

Panel A: Forecasting of Industrial Production Growth with VIX2 

 

h = 1 

VIX2 + lagged IPI + 
Controls 

h = 3 

VIX2 + lagged IPI + 
Controls 

h = 6 

VIX2 + lagged IPI + 
Controls 

h = 12 

VIX2 + lagged IPI + 
Controls 

̂  
0.013 

(4.60) 

0.007 

(2.73) 

0.004 

(2.63) 

0.004 

(2.91) 

1̂ (VIX2) 

0.007 
(0.05) 

-0.016 
(-1.54) 

0.000 
(0.01) 

0.016 
(1.45) 

Adj R2 0.188 0.403 0.323 0.246 

 
h = 1 

EP(RVARE) + lagged 

IPI + Controls 

h = 3 
EP(RVARE) + lagged 

IPI + Controls 

h = 6 
EP(RVARE) + lagged 

IPI + Controls 

h = 12 
EP(RVARE) + lagged 

IPI + Controls 

̂  
0.011 

(4.71) 

0.006 

(2.38) 

0.003 

(2.39) 

0.004 

(2.80) 

1̂  EP(RVARE) 

-0.029 

(-2.07) 

-0.015 

(-1.67) 

-0.003 

(-0.30) 

0.013 

(1.25) 

Adj R2 0.206 0.402 0.324 0.242 

 

h = 1 

VRPE + lagged IPI + 

Controls 

h = 3 

VRPE + lagged IPI + 

Controls 

h = 6 

VRPE + lagged IPI + 

Controls 

h = 12 

VRPE + lagged IPI + 

Controls 

̂  
0.012 

(5.44) 

0.008 

(3.33) 

0.003 

(2.97) 

0.004 

(3.06) 

1̂  (VRPE) 

-0.035 

(-2.31) 

-0.000 

(-0.03) 

-0.004 

(-0.57) 

-0.001 

(-0.32) 

Adj R2 0.211 0.392 0.324 0.229 

Panel B: In-Sample Forecasting of Industrial Production Growth with MOVE2 

 

h = 1 

MOVE2 + lagged IPI + 

Controls 

h = 3 

MOVE2 + lagged IPI + 

Controls 

h = 6 

MOVE2 + lagged IPI + 

Controls 

h = 12 

MOVE2 + lagged IPI + 

Controls 

̂  
0.013 
(5.13) 

0.008 
(3.23) 

0.004 
(3.20) 

0.004 
(3.03) 

1̂ (MOVE2) 

0.007 

(0.08) 

-0.031 

(-0.56) 

-0.061 

(-1.05) 

-0.009 

(-0.16) 

Adj R2 0.187 0.393 0.328 0.229 

 

h = 1 

EP(RVART) + lagged 

IPI + Controls 

h = 3 

EP(RVART) + lagged 

IPI + Controls 

h = 6 

EP(RVART) + lagged 

IPI + Controls 

h = 12 

EP(RVART) + lagged 

IPI + Controls 

̂  
0.013 

(4.75) 

0.008 

(3.16) 

0.004 

(3.05) 

0.003 

(2.84) 

1̂  EP(RVART) 

-0.062 

(-0.51) 

-0.036 

(-0.48) 

-0.038 

(-0.54) 

0.018 

(0.22) 

Adj R2 0.189 0.393 0.324 0.230 

 
h = 1 

VRPT + lagged IPI + 

Controls 

h = 3 
VRPT + lagged IPI + 

Controls 

h = 6 
VRPT + lagged IPI + 

Controls 

h = 12 
VRPT + lagged IPI + 

Controls 

̂  
0.013 

(5.06) 

0.008 

(3.33) 

0.004 

(3.03) 

0.004 

(3.07) 

1̂  (VRPT) 

-0.108 

(-0.54) 

0.016 

(0.28) 

0.077 

(1.60) 

0.045 

(1.1) 

Adj R2 0.191 0.392 0.327 0.231 

This table shows the results of predicting OLS regressions of future industrial production growth for one-

3-, 6-, and 12-month horizons. The predictors are either, VIX2, MOVE2, the conditional expected realized 

variance of the S&P500 index or the composite Treasury bond returns, and the variance risk premium 

(VRP) of VIX2 or MOVE2. We always control for the lagged of the dependent variable, TERM, DEF, DY, 

the HJ volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/ 

HAC standard errors. 
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Table 3.  In-Sample Forecasting of Excess Market Return for Alternative Horizons with 

Statistically Significant Controls. Risk-Neutral Variance and its Components, May 1988-June 

2017. 

Panel A: Forecasting of Market Excess Return with VIX2 

 

h = 1 

VIX2 + lagged 
EXCMKT + Controls 

h = 3 

VIX2 + lagged 
EXCMKT + Controls 

h = 6 

VIX2 + lagged 
EXCMKT + Controls 

h = 12 

VIX2 + lagged 
EXCMKT + Controls 

̂  
0.004 

(0.87) 

-0.011 

(-1.25) 

-0.016 

(-2.14) 

-0.016 

(-1.72) 

1̂ (VIX2) 

0.051 
(0.45) 

0.089 
(0.99) 

0.131 
(2.15) 

0.088 
(2.92) 

Adj R2 0.001 0.028 0.085 0.144 

 
h = 1 

EP(RVARE) + lagged 

EXCMKT + Controls 

h = 3 
EP(RVARE) + lagged 

EXCMKT + Controls 

h = 6 
EP(RVARE) + lagged 

EXCMKT + Controls 

h = 12 
EP(RVARE) + lagged 

EXCMKT + Controls 

̂  
0.006 

(2.12) 

-0.007 

(-0.82) 

-0.011 

(-1.64) 

-0.013 

(-2.09) 

 1̂  EP(RVARE) 

0.015 

(0.19) 

0.002 

(0.03) 

0.074 

(2.08) 

0.060 

(2.81) 

Adj R2 0.000 0.015 0.058 0.127 

 

h = 1 

VRPE + lagged 

EXCMKT + Controls 

h = 3 

VRPE + lagged 

EXCMKT + Controls 

h = 6 

VRPE + lagged 

EXCMKT + Controls 

h = 12 

VRPE + lagged 

EXCMKT + Controls 

̂  
0.005 

(2.10) 

-0.009 

(-1.13) 

-0.009 

(-1.30) 

-0.011 

(.1.72) 

1̂  (VRPE) 

-0.065 

(-0.52) 

-0.123 

(-1.12) 

-0.045 

(-0.80) 

-0.016 

(-0.49) 

Adj R2 0.001 0.032 0.042 0.103 

Panel B: In-Sample Forecasting of Market Excess Return with MOVE2 

 

h = 1 

MOVE2 + lagged 

EXCMKT + Controls 

h = 3 

MOVE2 + lagged 

EXCMKT + Controls 

h = 6 

MOVE2 + lagged 

EXCMKT + Controls 

h = 12 

MOVE2 + lagged 

EXCMKT + Controls 

̂  
0.013 
(2.09) 

-0.003 
(-0.32) 

-0.005 
(-0.74) 

-0.008 
(-1.24) 

1̂ (MOVE2) 

-0.704 

(-0.99) 

-0.553 

(-1.04) 

-0.385 

(-1.09) 

-0.329 

(-0.95) 

Adj R2 0.072 0.028 0.049 0.115 

 

h = 1 

EP(RVART) + lagged 

EXCMKT + Controls 

h = 3 

EP(RVART) + lagged 

EXCMKT + Controls 

h = 6 

EP(RVART) + lagged 

EXCMKT + Controls 

h = 12 

EP(RVART) + lagged 

EXCMKT + Controls 

̂  
0.008 

(1.43) 

-0.004 

(-0.43) 

-0.006 

(-0.84) 

-0.008 

(-1.23) 

1̂  EP(RVART) 

-0.222 

(-0.35) 

-0.376 

(-0.74) 

-0.258 

(-0.63) 

-0.276 

(-0.62) 

Adj R2 0.000 0.019 0.042 0.108 

 
h = 1 

VRPT + lagged 

EXCMKT + Controls 

h = 3 
VRPT + lagged 

EXCMKT + Controls 

h = 6 
VRPT + lagged 

EXCMKT + Controls 

h = 12 
VRPT + lagged 

EXCMKT + Controls 

̂  
0.006 

(2.38) 

-0.007 

(-0.91) 

-0.009 

(-1.19) 

-0.011 

(-1.66) 

1̂  (VRPT) 

1.818 

(1.57) 

0.808 

(1.31) 

0.533 

(1.17) 

0.331 

(1.37) 

Adj R2 0.017 0.025 0.047 0.108 

This table shows the results of predicting OLS regressions of future stock market excess return for one-, 

3-, 6-, and 12-month horizons. The predictors are either, VIX2, MOVE2, the conditional expected realized 

variance of the S&P500 index or the composite Treasury bond returns, and the variance risk premium 

(VRP) of VIX2 or MOVE2. We always control for the lagged of the dependent variable, TERM, DEF, DY, 

the HJ volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/ 

HAC standard errors. 



31 

 

 

Table 4.  In-Sample Forecasting of Excess Treasury Bond Return for Alternative Horizons with 

Statistically Significant Controls. Risk-Neutral Variance and its Components, May 1988-June 

2017. 

Panel A: In-Sample Forecasting of Excess Treasury Bond Return with VIX2 

 

h = 1 

VIX2 +  
lagged TRYRET + 

Controls 

h = 3 

VIX2 +  
lagged TRYRET + 

Controls 

h = 6 

VIX2 +  
lagged TRYRET + 

Controls 

h = 12 

VIX2 +  
lagged TRYRET + 

Controls 

̂  
-0.001 

(-0.58) 

0.001 

(0.25) 

0.002 

(1.30) 

0.002 

(1.91) 

1̂ (VIX2) 
0.056 

(1.39) 

0.029 

(0.78) 

0.000 

(0.01) 

0.008 

(0.52) 

Adj R2 0.075 0.001 0.019 0.162 

 

h = 1 

EP(RVARE) + lagged 

TRYRET + Controls  

h = 3 

EP(RVARE) + lagged 

TRYRET + Controls  

h = 6 

EP(RVARE) + lagged 

TRYRET + Controls  

h = 12 

EP(RVARE) + lagged 

TRYRET + Controls   

̂  
0.000 

(0.03) 

0.002 

(1.18) 

0.002 

(1.89) 

0.002 

(2.83) 

1̂  EP(RVARE) 

0.046 

(0.98) 

0.001 

(0.02) 

-0.015 

(-0.99) 

-0.003 

(-0.29) 

Adj R2 0.069 -0.001 0.023 0.160 

 

h = 1 

VRPE +  
lagged TRYRET + 

Controls 

h = 3 

VRPE +  
lagged TRYRET + 

Controls  

h = 6 

VRPE +  
lagged TRYRET + 

Controls  

h = 12 

VRPE +  
lagged TRYRET + 

Controls    

̂  
0.001 
(1.02) 

0.001 
(0.91) 

0.002 
(1.37) 

0.002 
(2.98) 

1̂  (VRPE) 

-0.008 

(-0.13) 

-0.057 

(-2.31) 

-0.035 

(-2.54) 

-0.023 

(-2.49) 

Adj R2 0.061 0.007 0.028 0.169 

Panel B: In-Sample Forecasting of Excess Treasury Bond Return with MOVE2 

 

h = 1 
MOVE2 +  

lagged TRYRET + 

Controls 

h = 3 
MOVE2 +  

lagged TRYRET + 

Controls 

h = 6 
MOVE2 +  

lagged TRYRET + 

Controls 

h = 12 
MOVE2 +  

lagged TRYRET + 

Controls 

̂  
0.001 
(0.27) 

0.000 
(0.02) 

0.002 
(0.97) 

0.001 
(0.99) 

1̂ (MOVE2) 
0.060 

(0.22) 

0.169 

(0.76) 

0.025 

(0.18) 

0.104 

(1.08) 

Adj R2 0.064 -0.001 0.019 0.168 

 

h = 1 

EP(RVART) + lagged 
TRYRET + Controls  

h = 3 

EP(RVART) + lagged 
TRYRET + Controls  

h = 6 

EP(RVART) + lagged 
TRYRET + Controls  

h = 12 

EP(RVART) + lagged 
TRYRET + Controls  

̂  
-0.002 

(-0.80) 

0.001 

(0.42) 

0.002 

(1.06) 

0.001 

(0.82) 

1̂  EP(RVART) 

0.368 
(1.31) 

0.060 
(0.26) 

-0.034 
(-0.19) 

0.096 
(0.74) 

Adj R2 0.068 -0.005 0.019 0.165 

 

h = 1 

VRPT +  

lagged TRYRET + 
Controls  

h = 3 

VRPT +  

lagged TRYRET + 
Controls  

h = 6 

VRPT +  

lagged TRYRET + 
Controls  

h = 12 

VRPT +  

lagged TRYRET + 
Controls  

̂  
0.001 

(1.14) 

0.002 

(1.48) 

0.002 

(1.76) 

0.002 

(3.42) 

1̂  (VRPT) 

0.582 
(1.20) 

-0.419 
(-1.16) 

-0.154 
(-1.06) 

-0.123 
(-1.54) 

Adj R2 0.069 0.004 0.021 0.164 

This table shows the results of predicting OLS regressions of future Treasury bond excess return for one-

3-, 6-, and 12-month horizons. The predictors are either, VIX2, MOVE2, the conditional expected realized 

variance of the S&P500 index or the composite Treasury bond returns, and the variance risk premium 

(VRP) of VIX2 or MOVE2. We always control for the lagged of the dependent variable, TERM, DEF, DY, 
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the HJ volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/ 

HAC standard errors. 
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Table 5. In-Sample Forecasting of HML for Alternative Horizons with Statistically Significant 

Controls. Risk-Neutral Variance and its Components, May 1988-June 2017. 

Panel A: In-Sample Forecasting of HML with VIX2 

 
h = 1 

VIX2 + lagged HML + 

Controls 

h = 3 
VIX2 + lagged HML + 

Controls 

h = 6 
VIX2 + lagged HML + 

Controls 

h = 12 
VIX2 + lagged HML + 

Controls 

̂  
0.018 

(2.62) 

0.006 

(2.73) 

0.018 

(2.64) 

0.013 

(2.49) 

1̂ (VIX2) 

-0.107 

(-2.70) 

-0.110 

(-2.34) 

-0.046 

(-1.32) 

-0.023 

(-0.99) 

Adj R2 0.051 0.060 0.054 0.039 

 

h = 1 

EP(RVARE) + lagged 

HML + Controls 

h = 3 

EP(RVARE) + lagged 

HML + Controls 

h = 6 

EP(RVARE) + lagged 

HML + Controls 

h = 12 

EP(RVARE) + lagged 

HML + Controls 

̂  
0.016 
(2.29) 

0.005 
(2.35) 

0.016 
(2.41) 

0.013 
(2.33) 

1̂  EP(RVARE) 

-0.076 

(-2.08) 

-0.092 

(-2.31) 

-0.018 

(-0.79) 

0.001 

(0.04) 

Adj R2 0.042 0.052 0.041 0.031 

 

h = 1 

VRPE + lagged HML + 

Controls 

h = 3 

VRPE + lagged HML + 

Controls 

h = 6 

VRPE + lagged HML + 

Controls 

h = 12 

VRPE + lagged HML + 

Controls 

̂  
0.015 
(2.16) 

0.002 
(0.78) 

0.017 
(2.47) 

0.013 
(2.49) 

1̂  (VRPE) 

0.039 

(0.32) 

0.001 

(0.01) 

0.048 

(0.94) 

0.048 

(1.61) 

Adj R2 0.031 0.009 0.047 0.047 

Panel B: In-Sample Forecasting of HML with MOVE2 

 
h = 1 

MOVE2 + lagged HML 

+ Controls 

h = 3 
MOVE2 + lagged HML 

+ Controls 

h = 6 
MOVE2 + lagged HML 

+ Controls 

h = 12 
MOVE2 + lagged HML 

+ Controls 

̂  
0.020 

(2.53) 

0.006 

(1.38) 

0.018 

(2.46) 

0.013 

(2.37) 

1̂ (MOVE2) 

-0.517 

(-1.63) 

-0.432 

(-1.06) 

-0.179 

(-0.77) 

-0.038 

(-0.30) 

Adj R2 0.041 0.027 0.043 0.032 

 

h = 1 

EP(RVART) + lagged 

HML + Controls 

h = 3 

EP(RVART) + lagged 

HML + Controls 

h = 6 

EP(RVART) + lagged 

HML + Controls 

h = 12 

EP(RVART) + lagged 

HML + Controls 

̂  
0.018 
(1.73) 

0.005 
(1.04) 

0.016 
(2.05) 

0.013 
(2.19) 

1̂  EP(RVART) 

-0.270 

(-0.51) 

-0.369 

(-0.76) 

-0.018 

(-0.07) 

-0.001 

(-0.04) 

Adj R2 0.032 0.018 0.038 0.031 

 

h = 1 

VRPT + lagged HML + 

Controls 

h = 3 

VRPT + lagged HML + 

Controls 

h = 6 

VRPT + lagged HML + 

Controls 

h = 12 

VRPT + lagged HML + 

Controls 

̂  
0.013 
(1.82) 

0.001 
(0.79) 

0.015 
(2.34) 

0.012 
(2.19) 

1̂  (VRPT) 

1.128 

(2.84) 

0.611 

(1.52) 

0.537 

(2.32) 

0.108 

(0.91) 

Adj R2 0.045 0.020 0.053 0.032 

This table shows the results of predicting OLS regressions of future HML return for one, -3-, 6-, and 12-

month horizons. The predictors are either, VIX2, MOVE2, the conditional expected realized variance of 

the S&P500 index or the composite Treasury bond returns, and the variance risk premium (VRP) of VIX2 

or MOVE2. We always control for the lagged of the dependent variable, TERM, DEF, DY, the HJ 

volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/ HAC 

standard errors. 
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Table 6. In-Sample Forecasting of BAB for Alternative Horizons with Statistically Significant 

Controls. Risk-Neutral Variance and its Components, May 1988-June 2017. 

Panel A: In-Sample Forecasting of BAB with VIX2 

 
h = 1 

VIX2 + lagged BAB + 

Controls 

h = 3 
VIX2 + lagged BAB + 

Controls 

h = 6 
VIX2 + lagged BAB + 

Controls 

h = 12 
VIX2 + lagged BAB + 

Controls 

̂  
0.046 

(4.68) 

0.041 

(4.07) 

0.048 

(4.39) 

0.030 

(2.70) 

1̂ (VIX2) 

-0.221 
(-3.25) 

-0.134 
(-1.74) 

-0.077 
(-1.37) 

-0.058 
(-1.28) 

Adj R2 0.109 0.173 0.219 0.295 

 
h = 1 

EP(RVARE) + lagged 

BAB + Controls 

h = 3 
EP(RVARE) + lagged 

BAB + Controls 

h = 6 
EP(RVARE) + lagged 

BAB + Controls 

h = 12 
EP(RVARE) + lagged 

BAB + Controls 

̂  
0.039 

(4.13) 

0.036 

(3.79) 

0.037 

(3.99) 

0.027 

(2.48) 

1̂  EP(RVARE) 

-0.044 

(-0.55) 

-0.012 

(-0.18) 

0.005 

(0.11) 

-0.013 

(-0.38) 

Adj R2 0.061 0.129 0.196 0.278 

 

h = 1 

VRPE + lagged BAB + 

Controls 

h = 3 

VRPE + lagged BAB + 

Controls 

h = 6 

VRPE + lagged BAB + 

Controls 

h = 12 

VRPE + lagged BAB + 

Controls 

̂  
0.042 
(4.65) 

0.038 
(4.07) 

0.039 
(4.31) 

0.028 
(2.62) 

1̂  (VRPE) 

0.310 

(3.14) 

0.217 

(3.76) 

0.149 

(3.72) 

0.072 

(1.90) 

Adj R2  0.113 0.192 0.243 0.293 

Panel B: In-Sample Forecasting of BAB with MOVE2 

 

h = 1 

MOVE2 + lagged BAB 
+ Controls 

h = 3 

MOVE2 + lagged BAB 
+ Controls 

h = 6 

MOVE2 + lagged BAB 
+ Controls 

h = 12 

MOVE2 + lagged BAB 
+ Controls 

̂  
0.044 

(4.59) 

0.040 

(4.24) 

0.038 

(4.29) 

0.028 

(2.47) 

1̂ (MOVE2) 

-0.508 
(-1.27) 

-0.339 
(-1.03) 

-0.044 
(-0.15) 

-0.088 
(-0.33) 

Adj R2 0.064 0.135 0.196 0.278 

 
h = 1 

EP(RVART) + lagged 

BAB + Controls 

h = 3 
EP(RVART) + lagged 

BAB + Controls 

h = 6 
EP(RVART) + lagged 

BAB + Controls 

h = 12 
EP(RVART) + lagged 

BAB + Controls 

̂  
0.041 
(4.23) 

0.036 
(3.94) 

0.036 
(3.92) 

0.027 
(2.43) 

1̂  EP(RVART) 

-0.287 

(-0.56) 

-0.022 

(-0.06) 

0.098 

(0.25) 

-0.076 

(-0.24) 

Adj R2 0.060 0.129 0.199 0.277 

 

h = 1 

VRPT + lagged BAB + 

Controls 

h = 3 

VRPT + lagged BAB + 

Controls 

h = 6 

VRPT + lagged BAB + 

Controls 

h = 12 

VRPT + lagged BAB + 

Controls 

̂  
0.038 
(3.97) 

0.035 
(3.74) 

0.037 
(3.99) 

0.027 
(2.45) 

1̂  (VRPT) 

0.838 

(1.16) 

0.878 

(2.54) 

0.299 

(1.09) 

0.094 

(0.38) 

Adj R2 0.064 0.143 0.199 0.277 

This table shows the results of predicting OLS regressions of future BAB return for one, -3-, 6-, and 12-

month horizons. The predictors are either, VIX2, MOVE2, the conditional expected realized variance of 

the S&P500 index or the composite Treasury bond returns, and the variance risk premium (VRP) of VIX2 

or MOVE2. We always control for the lagged of the dependent variable, TERM, DEF, DY, the HJ 

volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/ HAC 

standard errors. 
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Table 7. Out-of-Sample Forecasting Performance of VIX2 and MOVE2, May 1988-June 2017. 

Panel A: Out-of-Sample Forecasting of Industrial Production Growth  

 h = 1 h = 3 h = 6 h = 12  

 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

 

RMSE 0.987 1.005 0.966 0.997 0.996 0.990 1.013 1.001 
 

p-

value 

(t) 

0.322 0.749 0.004 0.030 0.023 0.016 0.095 0.040 

 

p-

value 

(F) 

0.291 0.701 0.000 0.015 0.005 0.003 0.856 0.057 

 

Result NO NO YES YES YES YES NO NO 
 

Panel B: Out-of-Sample Forecasting of Stock Market Excess Return  

 h = 1 h = 3 h = 6 h = 12  

 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

 

RMSE 1.002 0.997 0.997 0.989 0.977 0.983 0.986 0.994 
 

p-

value 

(t) 

0.277 0.064 0.064 0.006 0.005 0.001 0.003 0.023 

 

p-

value 

(F) 

0.250 0.073 0.051 0.002 0.003 0.000 0.000 0.005 

 

Result NO YES YES YES YES YES YES YES 
 

Panel C: Out-of-Sample Forecasting of Treasury Bond Excess Return  

 h = 1 h = 3 h = 6 h = 12  

 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

 

RMSE 0.993 1.004 1.004 1.005 1.005 1.007 1.034 0.995 
 

p-

value 

(t) 

0.047 0.444 0.100 0.331 0.147 0.271 0.248 0.018 

 

p-

value 

(F) 

0.030 0.513 0.291 0.463 0.384 0.612 0.999 0.006 

 

Result YES NO NO NO NO NO NO YES 
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Table 7 (continuation). Out-of-Sample Forecasting Performance of VIX2 and MOVE2, May 

1988-June 2017. 

Panel D: Out-of-Sample Forecasting of HML 

 h = 1 h = 3 h = 6 h = 12 

 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

RMSE 1.005 1.005 0.990 1.004 1.012 1.008 1.013 1.003 

p-value 

(t) 
0.846 0.851 0.024 0.197 0.117 0.624 0.095 0.123 

p-value 

(F) 
0.722 0.728 0.001 0.445 0.758 0.704 0.963 0.142 

Result NO NO YES NO NO NO NO NO 

Panel E: Out-of-Sample Forecasting of BAB 

 h = 1 h = 3 h = 6 h = 12 

 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

VIX2 

improves 

MOVE2 

MOVE2 

improves 

VIX2 

RMSE 0.989 1.003 1.021 1.005 1.010 1.004 0.922 1.002 

p-value 

(t) 
0.160 0.911 0.144 0.113 0.032 0.107 0.013 0.041 

p-value 

(F) 
0.053 0.856 0.991 0.261 0.758 0.266 0.000 0.101 

Result YES NO NO NO NO NO YES NO 

This table shows the out-of-sample forecast accuracy of either VIX2 or MOVE2, comparing the 

unrestricted model that contains either VIX2 or MOVE2 and the additional standard predictor with the 

restricted model that includes only the standard predictor where this predictor can also be VIX2 or 

MOVE2. RMSE is the relative mean-squared forecasting error that compares the mean-squared 

forecasting error of the restricted model and the mean-squared forecasting error of the unrestricted model. 

The p-value (t) and p-value (F) are two statistics to test the equal forecasting ability of the two models 

associated with expressions (28) and (30). They are obtained by an efficient bootstrap method for 

simulating asymptotic critical values. 
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Figure 1 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

 

Figure 3 
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Figure 4 
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APPENDIX: Out-of-Sample Competing Performance of VIX2 and MOVE2 

In Tables A.1 to A.5 shown below, we report the detailed results discussed in the out-

of-sample analysis of Section 5 of the paper. All tables have the same structure. For 

each horizon, we present the in-sample and out-of-sample results for the same 

competing predictors. In the first panel, for a given horizon, we show the in-sample 

evidence with a regression of two independent variables, namely each of the competing 

predictors and either VIX2 or MOVE2. In the second panel, again for a given horizon, 

we report the pairwise out-of-sample forecasting comparison. This is to say, we 

compare either VIX2 or MOVE2 against each of the competitors and report the RMSE 

and the corresponding p-values.  

With respect to the forecasting of real activity reported in Table A.1, DEF, HJ 

volatility bound and TED are all significant predictors with a negative sign at the short 

horizons. At longer horizons, TERM becomes a significant predictor with a positive 

sign, but the HJ bound and TED remain significantly different from zero. Except for 

TED, all results have been found before in literature. In Table A.2, we show that only 

TERM and DY predict future excess market returns at longer horizons and with the 

expected positive sign. Table A.3 contains the results regarding Treasury excess returns. 

DEF is a significant predictor for all horizons with a negative sign, while TED also 

forecast bond returns at the 3-month horizon. The results about HML are displayed in 

Table A.4. DEF with a positive sign, and the HJ bound with a negative sign are 

significant predictors of the value-growth risk-factor at all horizons and, finally, Table 

A.5 shows that the HJ volatility bound with a negative sign and TERM with a positive 

sign are significant predictor of the BAB factor at practically all horizons. 
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Table A.1 Out-of-Sample Industrial Production Growth Forecasting Power of VIX2 and MOVE2 

against Alternative Standard Predictors, May 1988-June 2017. 

Panel A: In-Sample Forecasting Ability: τ = 1 

2
t ,t 1 t 2 t t ,tIPI X VIX     + += + + +  

2
t ,t 1 t 2 t t ,tIPI X MOVE     + += + + +  

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.003 

(5.42) 

0.003 

(3.08) 

0.008 

(5.16) 

0.006 

(3.67) 

0.008 

(3.71) 

0.004 

(4.26) 

0.004 

(6.29) 

0.003 

(3.12) 

0.003 

(2.38) 

0.009 

(5.22) 

0.005 

(2.71) 

0.009 

(3.30) 

0.004 

(4.26) 

0.004 

(3.79) 

ˆ
1  

0.162 

(2.36) 

0.036 

(1.15) 

-0.287 

(-3.41) 

-0.112 

(-1.77) 

-0.008 

(-2.20) 

-0.067 

(-0.68) 

-0.162 

(-2.38) 

0.171 

(2.27) 

0.059 

(2.05) 

-0.303 

(-4.11) 

-0.076 

(-1.12) 

-0.009 

(-2.31) 

-0.040 

(-2.43) 

-0.186 

(-2.48) 

ˆ
2  

-0.041 

(-3.06) 

-0.047 

(-2.79) 

-0.010 

(-0.79) 

-0.046 

(-3.24) 

-0.045 

(-3.18) 

-0.040 

(-2.43) 

-0.040 

(-2.74) 

-0.190 

(-1.78) 

-0.262 

(-2.13) 

-0.051 

(-0.67) 

-0.221 

(-1.85) 

-0.235 

(-2.16) 

-0.067 

(-0.68) 

-0.189 

(-1.70) 

Adj R2 0.101 0.085 0.151 0.095 0.102 0.083 0.097 0.072 0.057 0.150 0.051 0.072 0.083 0.066 

Panel A.1: Out-of-Sample Forecasting Ability: τ = 1 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X VIX

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X MOVE

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  0.977 0.964 1,013 0.960 0.967 0.987 0.979 0.996 0.979 1.012 0.988 0.988 1.005 0.995 

p-val  

(t) 
0.018 0.043 0.994 0.025 0.507 0.322 0.054 0.138 0.106 0.959 0.122 0.576 0.749 0.233 

p-val 
(F) 

0.003 0.005 0.980 0.001 0.326 0.291 0.026 0.123 0.037 0.916 0.070 0.531 0.701 0.213 

Panel B: In-Sample Forecasting Ability: τ = 3 

2
t ,t 1 t 2 t t ,tIPI X VIX     + += + + +  

2
t ,t 1 t 2 t t ,tIPI X MOVE     + += + + +  

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.002 

(3.98) 

0.003 

(3.43) 

0.007 

(4.61) 

0.006 

(3.97) 

0.008 

(3.63) 

0.004 

(4.74) 

0.004 

(7.66) 

0.002 

(2.65) 

0.003 

(2.55) 

0.008 

(4.80) 

0.005 

(2.83) 

0.009 

(3.34) 

0.004 

(4.74) 

0.004 

(4.25) 

ˆ
1  

0.455 

(4.54) 

0.045 

(1.60) 

-0.181 

(-2.37) 

-0.092 

(-1.62) 

-0.008 

(-2.16) 

-0.094 

(-0.86) 

-0.179 

(-2.42) 

0.504 

(6.14) 

0.072 

(2.68) 

-0.226 

(-4.09) 

-0.048 

(-0.76) 

-0.009 

(-2.43) 

-0.042 

(-2.90) 

-0.200 

(-2.52) 

ˆ
2  

-0.028 

(-3.38) 

-0.050 

(-3.20) 

-0.027 

(-1.83) 

-0.050 

(-3.70) 

-0.048 

(-3.79) 

-0.042 

(-2.90) 

-0.044 

(-3.80) 

-0.107 

(-1.39) 

-0.300 

(-2.33) 

-0.130 

(-1.37) 

-0.261 

(-2.00) 

-0.266 

(-2.41) 

-0.094 

(-0.86) 

-0.216 

(-2.14) 

Adj R2 0.365 0.213 0.255 0.217 0.245 0.208 0.236 0.331 0.161 0.244 0.130 0.183 0.208 0.169 

Panel B.1: Out-of-Sample Forecasting Ability: τ = 3 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X VIX

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X MOVE

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  0.995 0.903 1,006 0.895 0.907 0.966 0.934 0.994 0.922 0.991 0.947 0.943 0.997 0.963 

p-val  
(t) 

0.014 0.003 0.069 0.001 0.009 0.004 0.007 0.016 0.002 0.005 0.004 0.011 0.030 0.006 

p-val 

(F) 
0.000 0.000 0.687 0.000 0.000 0.000 0.000 0.002 0.000 0.003 0.000 0.000 0.015 0.000 
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Table A.1 (continuation). Out-of-Sample Industrial Production Growth Forecasting Power of 

VIX2 and MOVE2 against Alternative Standard Predictors, May 1988-June 2017. 

Panel C: In-Sample Forecasting Ability: τ = 6 

2
t ,t 1 t 2 t t ,tIPI X VIX     + += + + +  

2
t ,t 1 t 2 t t ,tIPI X MOVE     + += + + +  

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.002 

(2.81) 

0.002 

(2.74) 

0.006 

(3.59) 

0.004 

(3.09) 

0.007 

(3.00) 

0.004 

(4.58) 

0.003 

(7.62) 

0.002 

(2.76) 

0.003 

(2.61) 

0.006 

(4.09) 

0.004 

(2.62) 

0.008 

(3.10) 

0.004 

(4.58) 

0.004 

(4.74) 

ˆ
1  

0.362 

(2.10) 

0.049 

(1.85) 

-0.147 

(-1.77) 

-0.050 

(-0.92) 

-0.007 

(-1.79) 

-0.131 

(-1.13) 

-0.209 

(-2.48) 

0.371 

(2.43) 

0.073 

(2.69) 

-0.156 

(-2.66) 

-0.011 

(-0.19) 

-0.008 

(-2.13) 

-0.024 

(-2.11) 

-0.206 

(-2.87) 

ˆ
2  

-0.020 

(-2.38) 

-0.036 

(-2.73) 

-0.017 

(-1.34) 

-0.036 

(-3.02) 

-0.034 

(-3.16) 

-0.024 

(-2.11) 

-0.028 

(-3.35) 

-0.121 

(-1.43) 

-0.262 

(-2.36) 

-0.134 

(-1.46) 

-0.232 

(-2.01) 

-0.227 

(-2.38) 

-0.131 

(-1.13) 

-0.174 

(-2.07) 

Adj R2 0.234 0.150 0.174 0.134 0.176 0.150 0.185 0.225 0.163 0.187 0.115 0.172 0.150 0.171 

Panel C.1: Out-of-Sample Forecasting Ability: τ = 6 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X VIX

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X MOVE

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE 1.008 0.943 1,012 0.933 0.952 0.996 0.979 0.989 0.925 0.989 0.948 0.947 0.990 0.971 

p-val  

(t) 
0.092 0.001 0.088 0.000 0.010 0.023 0.019 0.022 0.003 0.008 0.014 0.005 0.016 0.041 

p-val 
(F) 

0.706 0.000 0.922 0.000 0.000 0.005 0.000 0.001 0.000 0.000 0.000 0.000 0.003 0.001 

Panel D: In-Sample Forecasting Ability: τ = 12 

2
t ,t 1 t 2 t t ,tIPI X VIX     + += + + +  

2
t ,t 1 t 2 t t ,tIPI X MOVE     + += + + +  

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.002 

(3.21) 

0.001 

(1.56) 

0.004 

(2.88) 

0.002 

(1.41) 

0.007 

(2.99) 

0.003 

(4.22) 

0.003 

(6.81) 

0.002 

(3.03) 

0.002 

(2.24) 

0.004 

(3.29) 

0.002 

(1.44) 

0.007 

(2.89) 

0.003 

(4.22) 

0.003 

(4.77) 

ˆ
1  

0.095 

(0.57) 

0.060 

(2.39) 

-0.103 

(-1.32) 

0.031 

(0.62) 

-0.008 

(-1.85) 

-0.079 

(-0.67) 

-0.248 

(-2.34) 

0.089 

(0.55) 

0.074 

(2.65) 

-0.094 

(-1.72) 

0.055 

(1.01) 

-0.008 

(-2.09) 

-0.010 

(-0.94) 

-0.245 

(-3.03) 

ˆ
2  

-0.014 

(-2.39) 

-0.017 

(-2.47) 

-0.004 

(-0.48) 

-0.017 

(-2.63) 

-0.015 

(-2.36) 

-0.010 

(-0.94) 

-0.007 

(-1.09) 

-0.101 

(-1.18) 

-0.151 

(-1.79) 

-0.060 

(-0.75) 

-0.135 

(-1.55) 

-0.115 

(-1.59) 

-0.079 

(-0.67) 

-0.048 

(-0.79) 

Adj R2 0.043 0.081 0.066 0.039 0.107 0.047 0.128 0.045 0.105 0.073 0.048 0.114 0.047 0.128 

Panel D.1: Out-of-Sample Forecasting Ability: τ = 12 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X VIX

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : IPI X MOVE

Restricted : IPI X

 

 

    

   

+ +

+ +

= + + +

= + +

 

 
Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

IPI 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  1.005 0.987 1,018 0.981 1.007 1.013 1.026 0.998 0.972 1.004 0.980 0.996 1.001 1.009 

p-val  
(t) 

0.090 0.014 0.399 0.005 0.059 0.095 0.260 0.027 0.010 0.151 0.011 0.056 0.040 0.070 

p-val 

(F) 
0.502 0.000 0.981 0.000 0.432 0.856 0.996 0.018 0.000 0.221 0.000 0.019 0.057 0.868 
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Table A.2. Out-of-Sample Excess Market Return Forecasting Power of VIX2 and MOVE2 

against Alternative Standard Predictors, May 1988-June 2017. 

Panel A: In-Sample Forecasting Ability: τ = 1 

2
t ,t 1 t 2 t t ,tEXCMKET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tEXCMKET X MOVE    + += + + +  

 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
0.004 

(0.86) 

0.005 

(0.80) 

0.013 

(1.35) 

-0.004 

(-0.41) 

0.025 

(1.43) 

0.014 

(1.95) 

0.007 

(1.52) 

0.013 

(2.08) 

0.012 

(1.79) 

0.012 

(1.17) 

0.002 

(0.17) 

0.033 

(1.85) 

0.014 

(1.95) 

0.014 

(2.21) 

ˆ
1  

0.092 

(1.52) 

0.054 

(0.27) 

-0.383 

(-0.88) 

0.480 

(1.32) 

-0.034 

(-1.28) 

-1.413 

(-1.75) 

-0.992 

(-1.11) 

0.048 

(0.90) 

0.130 

(0.61) 

0.142 

(0.35) 

0.676 

(1.81) 

-0.032 

(-1.38) 

0.145 

(1.92) 

-0.550 

(-0.81) 

ˆ
2  

0.052 

(0.46) 

0.012 

(0.10) 

0.060 

(0.54) 

0.009 

(0.07) 

0.020 

(0.19) 

0.145 

(1.92) 

0.056 

(0.65) 

-0.700 

(-0.98) 

-0.837 

(-1.11) 

-0.879 

(-1.22) 

-0.964 

(-1.28) 

-0.770 

(-1.14) 

-1.413 

(-1.75) 

-0.606 

(-0.97) 

Adj R2 0.001 -0.005 -0.003 0.000 0.003 0.017 0.005 0.008 0.007 0.006 0.016 0.014 0.017 0.009 

Panel A.1: Out-of-Sample Forecasting Ability: τ = 1 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X VIX

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X MOVE

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

RMSE  1.010 1.013 1,007 1.016 1.013 1.002 1.010 1.008 1.007 1.005 1.004 1.009 0.997 1.009 

p-val  

(t) 
0.540 0.622 0.260 0.663 0.547 0.277 0.553 0.460 0.308 0.259 0.192 0.522 0.064 0.599 

p-val 

(F) 
0.473 0.608 0.303 0.731 0.557 0.250 0.512 0.476 0.374  0.288 0.193 0.577 0.073 0.586 

Panel B: In-Sample Forecasting Ability: τ = 3 

2
t ,t 1 t 2 t t ,tEXCMKET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tEXCMKET X MOVE    + += + + +  

 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
0.001 

(0.34) 

0.003 

(0.50) 

0.012 

(1.36) 

-0.007 

(-0.78) 

0.020 

(1.31) 

0.010 

(1.83) 

0.005 

(1.33) 

0.010 

(1.97) 

0.008 

(1.44) 

0.010 

(1.03) 

-0.002 

(-0.27) 

0.025 

(1.58) 

0.010 

(1.83) 

0.010 

(2.04) 

ˆ
1  

0.143 

(1.56) 

0.089 

(0.47) 

-0.430 

(-0.97) 

0.536 

(1.62) 

-0.028 

(-1.16) 

-0.988 

(-1.65) 

-0.732 

(-1.07) 

0.035 

(0.42) 

0.133 

(0.71) 

0.045 

(0.11) 

0.663 

(1.95) 

-0.026 

(-1.15) 

0.127 

(1.96) 

-0.402 

(-0.79) 

ˆ
2  

0.088 

(0.99) 

0.035 

(0.36) 

0.090 

(0.96) 

0.032 

(0.32) 

0.043 

(0.48) 

0.127 

(1.96) 

0.069 

(0.93) 

-0.380 

(-0.70) 

-0.488 

(-0.86) 

-0.467 

(-0.90) 

-0.606 

(-1.06) 

-0.418 

(-0.80) 

-0.988 

(-1.65) 

-0.287 

(-0.57) 

Adj R2 0.011 -0.001 0.006 0.015 0.014 0.027 0.014 0.005 0.008 0.004 0.031 0.018 0.027 0.007 

Panel B.1: Out-of-Sample Forecasting Ability: τ = 3 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X VIX

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X MOVE

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

RMSE  1.004 1.017 1,006 1.015 1.012 0.997 1.008 1.005 1.003 1.003 0.999 1.007 0.989 1.006 

p-val  

(t) 
0.066 0.291 0.066 0.158 0.168 0.064 0.097 0.113 0.057 0.068 0.033 0.106 0.006 0.117 

p-val 

(F) 
0.309 0.982 0.534 0.995 0.887 0.051 0.508 0.286 0.219  0.152 0.029 0.682 0.002 0.556 
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Table A.2 (continuation). Out-of-Sample Excess Market Return Forecasting Power of VIX2 and 

MOVE2 against Alternative Standard Predictors, May 1988-June 2017. 

Panel C: In-Sample Forecasting Ability: τ = 6 

2
t ,t 1 t 2 t t ,tEXCMKET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tEXCMKET X MOVE    + += + + +  

 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
-0.001 

(-0.14) 

0.000 

(0.06) 

0.010 

(1.35) 

-0.010 

(-1.48) 

0.018 

(1.37) 

0.008 

(2.45) 

0.003 

(1.36) 

0.008 

(2.25) 

0.005 

(1.26) 

0.006 

(0.85) 

-0.005 

(-0.75) 

0.022 

(1.58) 

0.008 

(2.45) 

0.008 

(2.37) 

ˆ
1  

0.181 

(1.45) 

0.165 

(1.05) 

-0.418 

(-1.02) 

0.611 

(2.13) 

-0.027 

(-1.20) 

-0.862 

(-1.79) 

-0.583 

(-1.08) 

-0.006 

(-0.04) 

0.192 

(1.22) 

0.096 

(0.27) 

0.699 

(2.23) 

-0.024 

(-1.14) 

0.146 

(2.83) 

-0.257 

(-0.66) 

ˆ
2  

0.120 

(2.13) 

0.066 

(1.25) 

0.120 

(2.17) 

0.064 

(1.19) 

0.074 

(1.47) 

0.146 

(2.83) 

0.095 

(2.04) 

-0.236 

(-0.65) 

-0.301 

(-0.79) 

-0.290 

(-0.93) 

-0.396 

(-1.08) 

-0.205 

(-0.56) 

-0.862 

(-1.79) 

-0.112 

(-0.30) 

Adj R2 0.034 0.024 0.029 0.056 0.041 0.054 0.034 -0.001 0.013 0.000 0.052 0.021 0.054 0.001 

Panel C.1: Out-of-Sample Forecasting Ability: τ = 6 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X VIX

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X MOVE

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

RMSE 0.983 1.008 0.988 0.996 0.996 0.977 0.989 1.005 1.003 1.004 1.000 1.007 0.983 1.007 

p-val  

(t) 
0.004 0.117 0.017 0.019 0.036 0.005 0.008 0.107 0.046 0.196 0.029 0.117 0.001 0.183 

p-val 

(F) 
0.000 0.612 0.001 0.008 0.016 0.003 0.001 0.297 0.152  0.322 0.027 0.705 0.000 0.689 

Panel D: In-Sample Forecasting Ability: τ = 12 

2
t ,t 1 t 2 t t ,tEXCMKET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tEXCMKET X MOVE    + += + + +  

 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

EXC 

MKT 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
0.001 

(0.51) 

-0.002 

(-0.56) 

0.006 

(1.07) 

-0.009 

(1.71) 

0.018 

(1.93) 

0.006 

(2.48) 

0.004 

(2.05) 

0.007 

(1.77) 

0.002 

(0.57) 

0.004 

(0.66) 

-0.006 

(-1.06) 

0.020 

(1.82) 

0.006 

(2.48) 

0.006 

(1.82) 

ˆ
1  

0.130 

(0.89) 

0.274 

(2.28) 

-0.138 

(-0.49) 

0.602 

(2.55) 

-0.027 

(-1.59) 

-0.490 

(-1.23) 

-0.695 

(-1.51) 

-0.020 

(-0.13) 

0.293 

(2.30) 

0.162 

(0.62) 

0.665 

(2.51) 

-0.025 

(-1.49) 

0.093 

(2.11) 

-0.470 

(-1.18) 

ˆ
2  

0.074 

(2.46) 

0.048 

(1.70) 

0.066 

(2.12) 

0.044 

(1.75) 

0.055 

(1.67) 

0.093 

(2.11) 

0.081 

(2.14) 

-0.113 

(-0.33) 

-0.203 

(-0.59) 

-0.195 

(-0.61) 

-0.249 

(-0.77) 

-0.065 

(-0.19) 

-0.490 

(-1.23) 

0.099 

(0.32) 

Adj R2 0.024 0.070 0.016 0.088 0.065 0.039 0.058 -0.004 0.058 0.001 0.082 0.040 0.039 0.013 

Panel D.1: Out-of-Sample Forecasting Ability: τ = 12 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X VIX

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : EXCMKET X MOVE

Restricted : EXCMKET X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

EMKT 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

EMKT 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE 0.987 1.009 0.997 0.995 0.999 0.986 0.989 1.007 1.007 1.004 1.002 1.018 0.994 1.010 

p-val  

(t) 
0.002 0.229 0.040 0.028 0.034 0.003 0.019 0.079 0.108 0.131 0.105 0.216 0.023 0.227 

p-val 

(F) 
0.000 0.911 0.018 0.008 0.032 0.000 0.002 0.771 0.643 0.504 0.145 0.996 0.005 0.776 
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Table A.3. Out-of-Sample Excess Treasury Bond Return Forecasting Power of VIX2 and 

MOVE2 against Alternative Standard Predictors, May 1988-June 2017. 

Panel A: In-Sample Forecasting Ability: τ = 1 

2
t ,t 1 t 2 t t ,tTRYRET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tTRYRET X MOVE    + += + + +  

 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
-0.001 

(-0.58) 

-0.001 

(-0.46) 

0.007 

(1.52) 

-0.004 

(-0.79) 

0.002 

(0.33) 

0.001 

(0.35) 

-0.001 

(-0.38) 

0.001 

(0.26) 

0.001 

(0.32) 

0.002 

(0.44) 

-0.001 

(-0.24) 

0.003 

(0.46) 

0.001 

(0.35) 

0.001 

(0.42) 

ˆ
1  

0.242 

(5.09) 

-0.005 

(-0.05) 

-0.513 

(-2.09) 

0.108 

(0.52) 

-0.006 

(-0.60) 

-0.398 

(-1.47) 

-0.234 

(-1.01) 

0.256 

(5.75) 

-0.014 

(-0.13) 

-0.088 

(-0.39) 

0.111 

(0.55) 

-0.004 

(-0.40) 

0.113 

(2.33) 

-0.034 

(-0.13) 

ˆ
2  

0.057 

(1.45) 

0.076 

(0.88) 

0.141 

(3.27) 

0.075 

(1.87) 

0.077 

(1.92) 

0.113 

(2.33) 

0.084 

(1.89) 

0.071 

(0.27) 

0.096 

(0.29) 

0.146 

(0.44) 

0.062 

(0.18) 

0.094 

(0.28) 

-0.398 

(-1.47) 

0.074 

(0.22) 

Adj R2 0.072 0.014 0.034 0.015 0.016 0.021 0.016 0.062 -0.005 -0.004 -0.004 -0.005 0.021 -0.006 

Panel A.1: Out-of-Sample Forecasting Ability: τ = 1 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X VIX

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X MOVE

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

 
Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

RMSE  1.006 1.005 0.986 1.011 1.005 0.993 1.000 1.014 1.015 1.009 1.015 1.017 1.004 1.014 

p-val  

(t) 
0.231 0.149 0.011 0.204 0.420 0.047 0.093 0.770 0.674 0.399 0.589 0.471 0.444 0.600 

p-val 
(F) 

0.398 0.327 0.004 0.671 0.453 0.030 0.095 0.858 0.860  0.593 0.864 0.578 0.513 0.827 

Panel B: In-Sample Forecasting Ability: τ = 3 

2
t ,t 1 t 2 t t ,tTRYRET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tTRYRET X MOVE    + += + + +  

 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
0.000 

(0.25) 

-0.001 

(-0.38) 

0.009 

(2.29) 

-0.001 

(-0.12) 

0.003 

(0.50) 

0.000 

(0.02) 

0.003 

(1.36) 

0.000 

(0.02) 

-0.001 

(-0.34) 

0.005 

(1.30) 

-0.000 

(-0.08) 

0.002 

(0.36) 

0.000 

(0.02) 

0.001 

(0.26) 

ˆ
1  

-0.012 

(-0.18) 

0.079 

(0.79) 

-0.473 

(-2.58) 

0.049 

(0.25) 

-0.005 

(-0.47) 

0.079 

(0.35) 

0.606 

(2.10) 

0.000 

(0.00) 

0.066 

(0.65) 

-0.304 

(-1.62) 

0.020 

(0.10) 

-0.004 

(-0.41) 

0.021 

(0.53) 

0.353 

(1.65) 

ˆ
2  

0.029 

(0.78) 

0.028 

(0.80) 

0.089 

(2.48) 

0.028 

(0.79) 

0.030 

(0.86) 

0.021 

(0.53) 

-0.064 

(-1.71) 

0.170 

(0.77) 

0.145 

(0.64) 

0.362 

(1.37) 

0.164 

(0.74) 

0.173 

(0.78) 

0.079 

(0.35) 

0.015 

(0.08) 

Adj R2 0.001 0.005 0.039 0.001 0.002 0.001 0.016 -0.000 0.002 0.020 -0.001 0.000 0.001 0.010 

Panel B.1: Out-of-Sample Forecasting Ability: τ = 3 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X VIX

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X MOVE

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

 
Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

RMSE  1.006 1.003 0.983 1.007 1.006 1.004 1.009 1.006 1.007 0.996 1.005 1.009 1.005 1.006 

p-val  

(t) 
0.085 0.120 0.011 0.179 0.060 0.100 0.253 0.244 0.333 0.022 0.199 0.344 0.331 0.440 

p-val 

(F) 
0.371 0.197 0.000 0.721 0.525 0.291 0.559 0.431 0.678  0.011 0.258 0.906 0.463 0.472 
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Table A.3 (continuation). Out-of-Sample Excess Treasury Bond Return Forecasting Power of 

VIX2 and MOVE2 against Alternative Standard Predictors, May 1988-June 2017. 

Panel C: In-Sample Forecasting Ability: τ = 6 

2
t ,t 1 t 2 t t ,tTRYRET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tTRYRET X MOVE    + += + + +  

 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
0.002 

(1.31) 

0.000 

(0.12) 

0.007 

(2.47) 

0.002 

(0.46) 

0.005 

(1.03) 

0.002 

(0.95) 

0.002 

(1.45) 

0.002 

(0.97) 

0.000 

(0.07) 

0.006 

(2.16) 

0.001 

(0.34) 

0.005 

(0.93) 

0.002 

(0.95) 

0.002 

(1.32) 

ˆ
1  

-0.159 

(-1.52) 

0.099 

(1.15) 

-0.308 

(-2.10) 

0.023 

(0.14) 

-0.006 

(-0.65) 

0.068 

(0.40) 

0.243 

(1.54) 

-0.161 

(-1.55) 

0.103 

(1.18) 

-0.270 

(-1.92) 

0.022 

(0.13) 

-0.006 

(-0.68) 

-0.016 

(-0.62) 

0.231 

(1.49) 

ˆ
2  

0.000 

(0.01) 

-0.009 

(-0.45) 

0.030 

(1.28) 

-0.009 

(-0.46) 

-0.008 

(-0.39) 

-0.016 

(-0.62) 

-0.023 

(-1.12) 

0.027 

(0.20) 

-0.039 

(-0.27) 

0.174 

(1.07) 

-0.005 

(-0.04) 

0.006 

(0.05) 

0.068 

(0.40) 

-0.118 

(-0.82) 

Adj R2 0.019 0.009 0.027 -0.004 0.000 -0.004 0.009 0.020 0.008 0.027 -0.006 -0.001 -0.004 0.005 

Panel C.1: Out-of-Sample Forecasting Ability: τ = 6 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X VIX

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X MOVE

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

 
Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

RMSE  1.009 1.007 1.000 1.010 1.007 1.005 1.002 1.010 1.011 1.002 1.007 1.009 1.007 1.005 

p-val  

(t) 
0.479 0.123 0.058 0.121 0.359 0.147 0.096 0.453 0.292 0.106 0.247 0.320 0.271 0.217 

p-val 
(F) 

0.876 0.518 0.061 0.740 0.387 0.384 0.142 0.733 0.878  0.152 0.520 0.846 0.612 0.352 

Panel D: In-Sample Forecasting Ability: τ = 12 

2
t ,t 1 t 2 t t ,tTRYRET X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tTRYRET X MOVE    + += + + +  

 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

̂  
0.002 

(1.93) 

0.000 

(0.27) 

0.006 

(3.07) 

0.002 

(0.64) 

0.004 

(0.98) 

0.001 

(0.84) 

0.002 

(1.70) 

0.001 

(1.01) 

0.000 

(0.00) 

0.005 

(2.65) 

0.001 

(0.44) 

0.006 

(1.59) 

0.001 

(0.84) 

0.010 

(2.16) 

ˆ
1  

-0.414 

(-4.75) 

0.076 

(1.25) 

-0.263 

(-2.44) 

0.004 

(0.03) 

-0.003 

(-0.50) 

0.114 

(0.97) 

0.084 

(0.80) 

-0.416 

(-5.04) 

0.074 

(1.18) 

-0.242 

(-2.78) 

-0.007 

(-0.05) 

0.208 

(1.32) 

-0.016 

(-0.82) 

-0.024 

(-0.13) 

ˆ
2  

0.007 

(0.50) 

-0.006 

(-0.36) 

0.028 

(1.30) 

-0.006 

(-0.36) 

-0.005 

(-0.32) 

-0.016 

(-0.82) 

-0.011 

(-0.71) 

0.102 

(1.06) 

0.016 

(0.15) 

0.204 

(2.05) 

0.046 

(0.43) 

-0.054 

(-0.21) 

0.114 

(0.97) 

-0.215 

(-0.85) 

Adj R2 0.160 0.015 0.049 -0.005 -0.002 0.001 -0.001 0.167 0.014 0.058 -0.004 0.041 0.001 0.002 

Panel D.1: Out-of-Sample Forecasting Ability: τ = 12 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X VIX

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted :TRYRET X MOVE

Restricted :TRYRET X

 

 

   

  

+ +

+ +

= + + +

= + +

 

 
Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Move2 TED 

Lag 

TRY 

RET 

TERM DEF DY 
HJ 

VOL 
Vix2 TED 

RMSE  1.020 1.069 1.027 1.028 1.050 1.034 1.043 1.004 1.018 0.995 1.007 1.006 0.995 1.004 

p-val  

(t) 
0.172 0.369 0.228 0.140 0.430 0.248 0.317 0.040 0.902 0.025 0.194 0.121 0.018 0.076 

p-val 

(F) 
0.970 1.000 0.979 01.000 1.000 0.999 1.000 0.314 0.963  0.009 0.832 0.638 0.006 0.222 
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Table A.4 Out-of-Sample HML Forecasting Power of VIX2 and MOVE2 against 

Alternative Standard Predictors, May 1988-June 2017. 

Panel A: In-Sample Forecasting Ability: τ = 1 

2
t ,t 1 t 2 t t ,tHML X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tHML X MOVE    + += + + +  

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.006 

(3.01) 

0.007 

(1.40) 

0.001 

(0.20) 

0.013 

(1.61) 

0.022 

(2.76) 

0.008 

(2.19) 

0.009 

(3.84) 

0.007 

(1.84) 

0.007 

(1.15) 

0.008 

(1.25) 

0.012 

(1.32) 

0.024 

(2.65) 

0.008 

(2.19) 

0.009 

(2.21) 

ˆ
1  

0.156 

(2.58) 

0.015 

(0.07) 

0.355 

(1.16) 

-0.284 

(-0.82) 

-0.026 

(-1.96) 

-0.118 

(-2.20) 

-0.522 

(-1.24) 

0.167 

(2.73) 

0.071 

(0.32) 

-0.011 

(-0.04) 

-0.201 

(-0.58) 

-0.028 

(-2.03) 

-0.079 

(-0.19) 

-0.633 

(-1.47) 

ˆ
2  

-0.112 

(-2.91) 

-0.126 

(-3.19) 

-0.171 

(-3.85) 

-0.124 

(-3.07) 

-0.119 

(-3.00) 

-0.079 

(-0.19) 

-0.109 

(-2.53) 

-0.535 

(-1.53) 

-0.615 

(-1.62) 

-0.582 

(-1.66) 

-0.537 

(-1.43) 

-0.572 

(-1.69) 

-0.118 

(-2.20) 

-0.409 

(-1.18) 

Adj R2 0.047 0.022 0.027 0.026 0.033 0.023 0.032 0.036 0.009 0.008 0.010 0.020 0.023 0.019 

Panel A.1: Out-of-Sample Forecasting Ability: τ = 1 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X VIX

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X MOVE

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +

 

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  0.996 0.991 0.989 0.992 0.993 1.005 0.998 1.000 0.998 0.997 1.000 1.001 1.005 1.002 

p-val  

(t) 
0.062 0.040 0.049 0.044 0.461 0.846 0.127 0.100 0.083 0.087 0.110 0.471 0.851 0.278 

p-val 
(F) 

0.033 0.008 0.020 0.013 0.365 0.722 0.101 0.096 0.064  0.082 0.106 0.476 0.728 0.304 

Panel B: In-Sample Forecasting Ability: τ = 3 

2
t ,t 1 t 2 t t ,tHML X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tHML X MOVE    + += + + +  

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.006 

(2.73) 

0.007 

(1.41) 

-0.002 

(-0.48) 

0.012 

(1.49) 

0.021 

(2.96) 

0.006 

(1.70) 

0.008 

(3.58) 

0.006 

(1.39) 

0.005 

(0.95) 

0.005 

(0.81) 

0.010 

(1.14) 

0.024 

(2.68) 

0.006 

(1.70) 

0.006 

(1.61) 

ˆ
1  

0.091 

(0.77) 

0.003 

(0.01) 

0.519 

(2.25) 

-0.248 

(-0.75) 

-0.025 

(-2.20) 

0.090 

(0.26) 

-0.494 

(-1.95) 

0.118 

(1.12) 

0.045 

(0.23) 

0.083 

(0.43) 

-0.187 

(-0.57) 

-0.028 

(-2.29) 

-0.124 

(-2.78) 

-0.658 

(-2.16) 

ˆ
2  

-0.110 

(-2.35) 

-0.116 

(-2.68) 

-0.182 

(-4.20) 

-0.115 

(-2.66) 

-0.109 

(-2.61) 

-0.124 

(-2.78) 

-0.098 

(-2.52) 

-0.435 

(-1.08) 

-0.464 

(-1.15) 

-0.500 

(-1.29) 

-0.399 

(-0.99) 

-0.425 

(-1.18) 

0.090 

(0.26) 

-0.232 

(-0.68) 

Adj R2 0.060 0.052 0.076 0.059 0.076 0.052 0.071 0.027 0.014 0.014 0.017 0.043 0.052 0.038 

Panel B.1: Out-of-Sample Forecasting Ability: τ = 3 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X VIX

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X MOVE

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +

 

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  0.988 0.976 0.964 0.973 0.981 0.990 0.992 0.999 0.997 0.993 1.000 1.003 1.004 1.003 

p-val  
(t) 

0.020 0.013 0.009 0.002 0.021 0.024 0.018 0.045 0.033 0.010 0.010 0.054 0.197 0.112 

p-val 

(F) 
0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.036 0.015  0.000 0.010 0.115 0.445 0.169 
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Table A.4 (continuation). Out-of-Sample HML Forecasting Power of VIX2 and MOVE2 against 

Alternative Standard Predictors, May 1988-June 2017. 

Panel C: In-Sample Forecasting Ability: τ = 6 

2
t ,t 1 t 2 t t ,tHML X VIX    + += + + +  

2
t ,t 1 t 2 t t ,tHML X MOVE    + += + + +  

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.004 

(1.98) 

0.004 

(0.93) 

-0.005 

(-1.19) 

0.008 

(1.01) 

0.018 

(2.71) 

0.004 

(1.29) 

0.005 

(2.45) 

0.003 

(1.09) 

0.003 

(0.72) 

-0.000 

(-0.02) 

0.007 

(0.86) 

0.018 

(2.59) 

0.004 

(1.29) 

0.004 

(1.25) 

ˆ
1  

0.062 

(0.51) 

0.005 

(0.03) 

0.492 

(2.61) 

-0.177 

(-0.56) 

-0.025 

(-2.30) 

0.038 

(0.13) 

-0.393 

(-1.63) 

0.075 

(0.66) 

0.024 

(0.15) 

0.228 

(1.44) 

-0.152 

(-0.48) 

-0.026 

(-2.32) 

-0.057 

(-1.35) 

-0.479 

(-1.91) 

ˆ
2  

-0.050 

(-1.43) 

-0.053 

(-1.58) 

-0.116 

(-3.48) 

-0.052 

(-1.49) 

-0.046 

(-1.32) 

-0.057 

(-1.35) 

-0.037 

(-1.05) 

-0.192 

(-0.70) 

-0.216 

(-0.82) 

-0.354 

(-1.25) 

-0.171 

(-0.63) 

-0.182 

(-0.79) 

0.038 

(0.13) 

-0.042 

(-0.18) 

Adj R2 0.019 0.016 0.055 0.022 0.056 0.016 0.032 0.007 0.001 0.013 0.006 0.046 0.016 0.023 

Panel C.1: Out-of-Sample Forecasting Ability: τ = 6 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X VIX

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +
 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X MOVE

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  1.011 0.996 0.980 0.996 1.007 1.012 1.015 1.006 1.006 0.996 1.006 1.004 1.008 1.006 

p-val  

(t) 
0.129 0.037 0.001 0.008 0.048 0.117 0.113 0.170 0.064 0.021 0.133 0.053 0.624 0.231 

p-val 
(F) 

0.929 0.014 0.000 0.000 0.599 0.758 0.973 0.522 0.397  0.008 0.770 0.207 0.704 0.298 

Panel D: In-Sample Forecasting Ability: τ = 12   

2
t ,t 1 t 2 t t ,tHML X VIX    + += + + +  2

t ,t 1 t 2 t t ,tHML X MOVE    + += + + +  

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.003 

(1.86) 

0.002 

(0.48) 

-0.003 

(-0.75) 

0.006 

(0.91) 

0.012 

(2.45) 

0.002 

(1.12) 

0.003 

(2.05) 

0.002 

(1.03) 

0.001 

(0.31) 

0.000 

(0.00) 

0.005 

(0.76) 

0.012 

(2.42) 

0.002 

(1.12) 

0.002 

(0.86) 

ˆ
1  

-0.029 

(-0.17) 

0.074 

(0.59) 

0.315 

(1.99) 

-0.135 

(-0.49) 

-0.016 

(-1.94) 

0.109 

(0.54) 

-0.215 

(-1.22) 

-0.022 

(-0.13) 

0.081 

(0.63) 

0.136 

(1.06) 

-0.138 

(-0.49) 

-0.017 

(-1.96) 

-0.036 

(-1.17) 

-0.312 

(-1.51) 

ˆ
2  

-0.027 

(-1.28) 

-0.026 

(-1.27) 

-0.067 

(-2.53) 

-0.025 

(-1.07) 

-0.022 

(-0.93) 

-0.036 

(-1.17) 

-0.016 

(-0.67) 

-0.050 

(-0.35) 

-0.079 

(-0.57) 

-0.137 

(-0.83) 

-0.013 

(-0.09) 

-0.031 

(-0.25) 

0.109 

(0.54) 

0.077 

(0.50) 

Adj R2 0.004 0.011 0.033 0.010 0.036 0.006 0.010 -0.005 0.003 0.002 0.001 0.030 0.006 0.008 

Panel D.1: Out-of-Sample Forecasting Ability: τ = 12 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X VIX

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +
 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : HML X MOVE

Restricted : HML X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

HML 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  1.013 0.999 0.999 1.006 1.020 1.013 1.023 1.010 1.003 1.005 1.006 1.019 1.003 1.007 

p-val  
(t) 

0.100 0.104 0.041 0.030 0.114 0.095 0.102 0.464 0.025 0.120 0.391 0.505 0.123 0.410 

p-val 

(F) 
0.934 0.090 0.025 0.558 0.964 0.963 0.985 0.866 0.100  0.605 0.570 1.000 0.142 0.771 
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Table A.5 Out-of-Sample BAB Forecasting Power of VIX2 and MOVE2 against Alternative 

Standard Predictors, May 1988-June 2017. 

Panel A: In-Sample Forecasting Ability: τ = 1 

2
t ,t 1 t 2 t t ,tBAB X VIX    + += + + +  2

t ,t 1 t 2 t t ,tBAB X MOVE    + += + + +  

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.017 

(5.97) 

0.012 

(2.59) 

0.003 

(0.38) 

0.024 

(2.31) 

0.051 

(4.55) 

0.016 

(3.88) 

0.020 

(5.63) 

0.014 

(3.72) 

0.009 

(1.79) 

0.017 

(2.65) 

0.019 

(1.86) 

0.052 

(4.79) 

0.016 

(3.88) 

0.016 

(4.61) 

ˆ
1  

0.098 

(1.24) 

0.360 

(1.75) 

0.877 

(1.75) 

-0.251 

(-0.60) 

-0.058 

(-3.29) 

0.430 

(0.84) 

-0.802 

(-1.54) 

0.120 

(1.37) 

0.453 

(2.05) 

-0.084 

(-0.31) 

-0.137 

(-0.31) 

-0.064 

(-3.64) 

-0.300 

(-4.84) 

-1.211 

(-2.42) 

ˆ
2  

-0.245 

(-4.56) 

-0.259 

(-5.09) 

-0.371 

(-4.70) 

-0.258 

(-4.24) 

-0.244 

(-3.50) 

-0.300 

(-4.84) 

-0.228 

(-3.52) 

-0.735 

(-2.31) 

-1.031 

(-3.15) 

-0.811 

(-2.60) 

-0.828 

(-2.30) 

-0.825 

(-2.33) 

0.430 

(0.84) 

-0.484 

(-1.30) 

Adj R2 0.083 0.087 0.093 0.075 0.108 0.076 0.083 0.028 0.034 0.014 0.014 0.056 0.076 0.035 

Panel A.1: Out-of-Sample Forecasting Ability: τ = 1 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X VIX

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X MOVE

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  0.982 0.977 0.973 0.971 0.991 0.989 1.005 1.001 0.993 0.999 0.999 1.004 1.003 1.006 

p-val  

(t) 
0.005 0.003 0.016 0.002 0.588 0.160 0.178 0.138 0.059 0.150 0.088 0.602 0.911 0.496 

p-val 
(F) 

0.000 0.000 0.001 0.000 0.478 0.053 0.332 0.150 0.024  0.147 0.075 0.647 0.856 0.697 

Panel B: In-Sample Forecasting Ability: τ = 3 

2
t ,t 1 t 2 t t ,tBAB X VIX    + += + + +  2

t ,t 1 t 2 t t ,tBAB X MOVE    + += + + +  

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.012 

(3.32) 

0.007 

(1.50) 

0.002 

(0.73) 

0.016 

(1.64) 

0.048 

(4.52) 

0.013 

(4.14) 

0.015 

(4.30) 

0.009 

(2.66) 

0.006 

(1.31) 

0.014 

(2.75) 

0.013 

(1.41) 

0.049 

(4.88) 

0.013 

(4.14) 

0.013 

(4.67) 

ˆ
1  

0.209 

(2.05) 

0.411 

(2.19) 

0.540 

(1.34) 

-0.091 

(-0.23) 

-0.059 

(-3.43) 

0.185 

(0.41) 

-0.585 

(-1.58) 

0.245 

(2.30) 

0.485 

(2.41) 

-0.059 

(-0.25) 

0.006 

(0.02) 

-0.063 

(-3.59) 

-0.189 

(-2.32) 

-0.828 

(-2.19) 

ˆ
2  

-0.139 

(-2.11) 

-0.171 

(-3.13) 

-0.240 

(-2.76) 

-0.171 

(-2.68) 

-0.155 

(-2.07) 

-0.189 

(-2.32) 

-0.148 

(-2.12) 

-0.353 

(-1.32) 

-0.810 

(-3.30) 

-0.592 

(-2.20) 

-0.631 

(-2.20) 

-0.579 

(-2.07) 

0.185 

(0.41) 

-0.366 

(-1.29) 

Adj R2 0.118 0.119 0.094 0.077 0.164 0.078 0.089 0.074 0.076 0.019 0.018 0.118 0.078 0.042 

Panel B.1: Out-of-Sample Forecasting Ability: τ = 3 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X VIX

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X MOVE

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  1.018 0.992 1.003 0.987 1.038 1.021 1.046 1.007 0.987 1.003 0.998 1.008 1.005 1.009 

p-val  
(t) 

0.106 0.022 0.061 0.019 0.082 0.144 0.197 0.352 0.004 0.085 0.013 0.122 0.113 0.293 

p-val 

(F) 
0.998 0.001 0.203 0.000 0.999 0.991 1.000 0.611 0.000  0.162 0.011 0.485 0.261 0.939 
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Table A.5 (continuation). Out-of-Sample BAB Forecasting Power of VIX2 and MOVE2 against 

Alternative Standard Predictors, May 1988-June 2017. 

Panel C: In-Sample Forecasting Ability: τ = 6 

2
t ,t 1 t 2 t t ,tBAB X VIX    + += + + +  2

t ,t 1 t 2 t t ,tBAB X MOVE    + += + + +  

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.009 

(3.10) 

0.005 

(1.29) 

0.005 

(0.80) 

0.011 

(1.24) 

0.048 

(5.14) 

0.011 

(3.89) 

0.013 

(4.86) 

0.006 

(1.89) 

0.004 

(0.98) 

0.011 

(2.33) 

0.008 

(0.95) 

0.048 

(5.31) 

0.011 

(3.89) 

0.011 

(4.05) 

ˆ
1  

0.264 

(2.52) 

0.372 

(2.06) 

0.406 

(1.15) 

0.068 

(0.18) 

-0.063 

(-4.03) 

0.265 

(0.59) 

-0.726 

(-2.19) 

0.307 

(2.90) 

0.419 

(2.21) 

-0.056 

(-0.28) 

0.123 

(0.30) 

-0.066 

(-4.08) 

-0.143 

(-2.36) 

-0.962 

(-2.81) 

ˆ
2  

-0.082 

(-1.83) 

-0.119 

(-3.53) 

-0.171 

(-2.77) 

-0.119 

(-3.03) 

-0.101 

(-1.89) 

-0.143 

(-2.36) 

-0.088 

(-1.80) 

-0.076 

(-0.30) 

-0.514 

(-2.11) 

-0.318 

(-1.20) 

-0.384 

(-1.32) 

-0.291 

(-1.15) 

0.265 

(0.59) 

-0.037 

(-0.14) 

Adj R2 0.121 0.111 0.072 0.057 0.209 0.060 0.085 0.094 0.073 0.006 0.008 0.173 0.060 0.055 

Panel C.1: Out-of-Sample Forecasting Ability: τ = 6 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X VIX

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X MOVE

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  1.014 0.980 0.993 0.983 1.027 1.010 1.037 1.007 0.994 1.002 1.000 1.009 1.004 1.007 

p-val  

(t) 
0.125 0.024 0.039 0.006 0.047 0.032 0.096 0.266 0.003 0.108 0.035 0.085 0.107 0.361 

p-val 
(F) 

0.998 0.000 0.004 0.000 0.997 0.758 0.998 0.547 0.000  0.080 0.035 0.659 0.266 0.619 

Panel D: In-Sample Forecasting Ability: τ = 12   

2
t ,t 1 t 2 t t ,tBAB X VIX    + += + + +  2

t ,t 1 t 2 t t ,tBAB X MOVE    + += + + +  

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

̂  
0.009 

(2.83) 

0.003 

(0.69) 

0.005 

(0.85) 

0.007 

(0.89) 

0.044 

(5.47) 

0.009 

(3.57) 

0.012 

(4.51) 

0.006 

(1.59) 

0.002 

(0.56) 

0.010 

(2.16) 

0.005 

(0.63) 

0.044 

(5.55) 

0.009 

(3.57) 

0.009 

(3.40) 

ˆ
1  

0.157 

(1.02) 

0.436 

(2.82) 

0.370 

(1.42) 

0.190 

(0.56) 

-0.059 

(-4.28) 

0.263 

(0.69) 

-0.957 

(-2.53) 

0.208 

(1.32) 

0.473 

(2.89) 

-0.024 

(-0.13) 

0.230 

(0.62) 

-0.061 

(-4.31) 

-0.114 

(-2.20) 

-1.214 

(-3.48) 

ˆ
2  

-0.071 

(-1.75) 

-0.090 

(-3.38) 

-0.138 

(-2.83) 

-0.091 

(-2.85) 

-0.074 

(-1.58) 

-0.114 

(-2.20) 

-0.049 

(-1.12) 

-0.054 

(-0.21) 

-0.416 

(-2.06) 

-0.215 

(-0.85) 

-0.287 

(-1.21) 

-0.175 

(-0.81) 

0.263 

(0.69) 

0.160 

(0.72) 

Adj R2 0.070 0.162 0.067 0.054 0.248 0.054 0.112 0.041 0.131 0.002 0.010 0.216 0.054 0.102 

Panel D.1: Out-of-Sample Forecasting Ability: τ = 12 

 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X VIX

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

2
t ,t 1 t 2 t t ,t

t ,t 1 t t ,t

Unrestricted : BAB X MOVE

Restricted : BAB X

 

 

   

  

+ +

+ +

= + + +

= + +
 

 
Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Move2 TED 

Lag 

BAB 
TERM DEF DY 

HJ 

VOL 
Vix2 TED 

RMSE  1.009 0.973 0.977 0.991 1.016 0.992 1.038 1.006 0.995 1.004 1.000 1.011 1.002 1.004 

p-val  
(t) 

0.046 0.004 0.026 0.094 0.070 0.013 0.070 0.067 0.005 0.086 0.112 0.189 0.041 0.057 

p-val 

(F) 
0.818 0.000 0.000 0.010 0.977 0.000 1.000 0.553 0.002  0.159 0.110 0.984 0.101 0.183 

Tables A.1 through A.5 show the out-of-sample forecast accuracy of either VIX2 or MOVE2, comparing 

the unrestricted model that contains either VIX2 or MOVE2 and the additional standard predictor with the 

restricted model that includes only the standard predictor where this predictor can also be VIX2 or 

MOVE2. RMSE is the relative mean-squared forecasting error that compares the mean-squared 
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forecasting error of the restricted model and the mean-squared forecasting error of the unrestricted model. 

The p-value (t) and p-value (F) are two statistics to test the equal forecasting ability of the two models 

associated with expressions (28) and (30). They are obtained by an efficient bootstrap method for 

simulating asymptotic critical values. We always control on individual basis for the lagged of the 

dependent variable, TERM, DEF, DY, the HJ volatility bound of Nieto and Rubio (2014) and TED. We 

report the t-statistic from Newey-West/ HAC standard errors. 

 


