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Abstract

This paper employs the equity (VIX) and Treasury (MOVE) risk-neutral volatilities to
assess their relative forecasting performance with respect to future real activity, stock
and Treasury excess returns, and aggregate risk factors. The in-sample evidence
suggests that the square of VIX tends to dominate the square of MOVE. The out-of-
sample predicting analysis, which is performed as a horse race between equity and
Treasury risk-neutral volatilities shows that, contrary to the previous results, both the

square of VIX and MOVE tend to complement each other.

Keywords: risk-neutral equity volatility, risk-neutral treasury volatility, predictability of real
activity and asset returns

JEL classification: C53, G12, G13

The authors acknowledge financial support from the Ministry of Economics and
Competitiveness through grant ECO2015-67035-P. In addition, Belén Nieto and Gonzalo Rubio
acknowledge financial support from Generalitat Valencia grant Prometeo/2017/158 and the
Bank of Spain, and Ana Gonzélez-Urteaga from Ministry of Economics and Competitiveness
through grant ECO2016-77631-R (AEI/FEDER.UE). We thank Martijn Boons, Alfonso
Novales, Pedro Serrano and conference participants at the VII Meeting on International
Economics at University Jaime | in Castellon, and the 26" Finance Forum at the University of
Cantabria and Bank of Santander.

Corresponding author: Gonzalo Rubio (gonzalo.rubio@uch.ceu.es)



mailto:gonzalo.rubio@uch.ceu.es

1. Introduction

The VIX index is the risk-neutral one-month expected stock market volatility for the
U.S. S&P500 index. It is computed by averaging the weighted prices of puts and calls
on the S&P500 index over a wide range of strike prices. It has become an extremely
popular and useful measure of near-term market volatility. It is surprising that the extant
and large literature on implied volatility has almost exclusively engaged on equity

markets.!

Indeed, by noting the lack of evidence about the relative importance between
risk-neutral equity and Treasury volatilities, the main contribution of this paper is to fill
partially this gap by analyzing the forecasting performance of both types of risk-neutral
volatilities. Specifically, we perform an in-sample, and a competing out-of-sample
forecasting analysis between VIX and the Treasury risk-neutral volatility regarding
future real activity, as well as future financial returns. This may be especially
informative given the recent findings of Gonzalez-Urteaga, Nieto and Rubio (2018).
They study the connectedness dynamics between both types of risk-neutral volatilities,
and show that most of the time, but especially during bad economic times, the Treasury
risk-neutral volatility is a net sender of volatility to VIX. They also detect that both
monetary policy and economic drivers explain the spillover dynamics between both

risk-neutral volatilities.

We employ the MOVE index, which is the Merrill Lynch Option Volatility
Estimate Index, as the Treasuries implied volatility. It is a term structure index of the

normalized implied volatility on one-month Treasury options which are weighted on the

! Notable exceptions are Choi, Mueller, and Vedolin (2017) and Mueller, Sabtchevsky, Vedolin, and
Whelan (2016), who analyze the market variance risk premium in both equity and Treasury markets, and
Mele, Obauashi, and Shalen (2015), who study the information contained in VIX and the interest rate
swap rate volatility index known as SRVX.
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2, 5, 10, and 30-year contracts. It is therefore the equivalent of VIX for Treasury bond
returns and reflects the market-based measure of uncertainty about the composite future
behavior of interest rates across different maturities of the yield curve. Current increases
in MOVE suggests that the market is willing to pay more for hedging against

unexpected movement in interest rates.

Given the evidence reported by Adrian, Crump, and Vogt (2018) pointing out
the importance of nonlinearities, our analysis of forecasting employs the square of VIX
and MOVE rather than the volatilities themselves. The in-sample relative forecasting
ability of VIX? and MOVE? suggests that VIX? tends to dominate MOVE? in both real
activity and financial returns. Although, it is important to recall that Gonzalez-Urteaga
et al. (2018) show that MOVE is a net contributor of volatility to VIX. This transmitted
information may be helping VIX in improving its forecasting capacity of future output

and financial returns.

On the other hand, the out-of-sample forecasting improvement of VIX? over
MOVE? and vice versa is mixed when predicting either real activity, the stock market,
or Treasury bond returns. Both VIX? and MOVE? complement each other in these
forecasting exercises. However, VIX? tends to outperform MOVE? when forecasting

aggregate risk factors on out-of-sample basis.

This paper proceeds as follows. Section 2 presents a brief discussion of the
behavior of VIX and MOVE and describes the data employed in the analysis. Section 3
describes the decomposition of VIX and MOVE into their uncertainty and risk aversion
components. Section 4 presents the in-sample predicting ability of equity and Treasury

risk-neutral volatilities, while Section 5 contains the out-of-sample forecasting analysis.



Finally, Section 6 presents our conclusions. The Appendix shows the detailed out-of-

sample forecasting results.
2. Data and a Preliminary Analysis of VIX and MOVE

We collected daily and monthly data for VIX and MOVE from April 4, 1988 to October
5, 2017, where the monthly data refers to the last observation in each month throughout

the sample period.?

Figure 1 shows the annualized daily behavior of VIX and MOVE. As expected,
risk-neutral volatilities are countercyclical, and the spikes during economic crisis are
much larger in equity than in Treasury volatilities. On daily basis, the minimum (9.2%)
and maximum (80.9%) levels for VIX were reached on October 5, 2017 and November
20, 2008, respectively, whereas for MOVE the minimum (4.7%) and maximum (26.5%)
were observed in August 7, 2017 and October 10, 2008, respectively. In Figure 2, we
show how volatile VIX and MOVE are. It displays the monthly volatility of both risk-
neutral volatilities estimated with daily data within each month in our sample. It is a
measure of financial uncertainty in the equity and Treasury bond markets, respectively.
As expected, VIX seems to be much more volatile than MOVE with much larger spikes

during bad news economic times.

Table 1 contains summary statistics for VIX and MOVE obtained from monthly
data from April 1988 to September 2017 using observations on the last day of the

month. During the full sample period, the average risk-neutral volatility for the stock

2 VIX was downloaded from www.choe.com and MOVE from Bloomberg. Since MOVE is available
from April 1988, we employ VXO (the risk-neutral market volatility for the U.S. S&P100 index) from
April 1988 to December 1989. Starting in January 2003, the CBOE launched the 10-year Treasury Note
Volatility Index (TYVIX), which measures a constant 30-day risk-neutral expected volatility on 10-year
Treasury Note futures prices. Given that MOVE is available for a much longer sample period, this
research employs MOVE rather than TYVIX. The correlation between both series using monthly data
(the quote in the last day of each month) from January 2003 to September 2017 is 0.953.


http://www.cboe.com/

market is 19.5%, whereas the risk-neutral volatility for Treasuries is much lower and
equal to 9.7% approximately. VIX is also much more volatile than MOVE, and
similarly, the range between the minimum and maximum values moves from 9.5% to
59.9% for VIX whereas it goes from 4.8% to 21.4% for MOVE.? VIX presents much
higher positive skewness and kurtosis than MOVE. Finally, both implies volatilities are
highly persistent with autocorrelation coefficients of 0.84 and 0.85 for VIX and MOVE,

respectively.

We next describe the data used in the forecasting analysis. All the competing or
control variables that we employ together with VIX and MOVE have been shown to be
strong predictors in previous literature. We employ two variables regarding the behavior
of interest rates. First, the slope of the term structure denoted as TERM, which is the
difference between the yield of the 10-year government bond and the 3-month Treasury
bill rate. TERM is one of the most popular forecasting instruments of real activity.
Increases in the slope of the term structure have been shown to predict higher future
growth rates of economic activity, whereas decreases in the slope tend to predict bad
economic times.* Moreover, Choi et al. (2017) employ an options panel data set on
Treasury futures to show that the term structure of risk-neutral variances is downward
sloping and significantly related to economic conditions. Given that MOVE includes
data on 2, 5, 10, and 30-year contracts, it seems reasonable to include TERM in the
regression model. Second, to consider inflation risk, we employ the expected inflation
for a one-year horizon denoted as EINF. It is downloaded from the Federal Reserve
Bank of Cleveland. Their model employs Treasury yields, inflation rate data, inflation

swaps, and survey-based measures of future inflation to estimate expected inflation to

3 To be precise, the coefficients of variation are 0.38 and 0.27 for VIX and MOVE, respectively.
4 Among many others, see Stock and Watson (2003).



alternative horizons. In this research, EINF is employed as one the key variables to
obtain the expected (physical) future variance of Treasury bond returns. In other words,
it is a variable used to estimate the uncertainty component of MOVE rather than a direct

predictor of future real activity or financial returns.

Regarding credit risk, Gilchrist and Zakrajsek (2012) show the forecasting power
of the term structure of credit spreads for future output growth. These authors argue that
there is a pure credit component orthogonal to macroeconomic conditions that accounts
for a large part of the predicting capacity of credit spreads. Given that we work with
risk-neutral volatilities, it is also important to note that Gonzalez-Urteaga and Rubio
(2016) show that the default premium, denoted as DEF, is a key factor explaining the
cross-sectional variation of equity volatility risk premia. It seems therefore natural to
employ the default spread, calculated as the difference between Moody’s yield on Baa
corporate bonds and the 10-year government bond yield, as a potentially relevant

control variable. Both yields are obtained from the Federal Reserve Statistical Release.

The most popular predictor, at least of future equity returns, is the aggregate
dividend yield, which we denote as DY. As discussed by Cochrane (2011), the time-
varying behavior of the expected market risk premium has a clear correlation with the
business cycle. He shows that, indeed, the DY is a strong forecaster of the future market
risk premium and, therefore, it becomes a potential state variable for forecasting real
activity.> We also employ the Hansen—Jagannathan (1991) volatility bound, denoted as
HJ VOL, as an additional predictor. Nieto and Rubio (2014) propose how to extract
future real activity information from optimally combined size-sorted portfolios.

Specifically, they show that a size-based volatility bound of the stochastic discount

> The dividend yield in logs is computed from the original series on Robert Shiller’s website
(http://www.econ.yale.edu/~shiller/).

6


http://www.econ.yale.edu/~shiller/

factor is a powerful in-sample and out-of-sample predictor of future industrial
production growth. Finally, given the discussion of Brunnermeier and Pedersen (2009),
we propose TED as a proxy for funding liquidity, and as an additional predictor
variable. TED is the spread between the 3-month LIBOR based on U.S. dollars and 3-

month Treasury Bill.

We also collect data on the variables to be predicted. As a measure of real
economic activity, we employ monthly data of the Industrial Production Index (IPI).
These data are downloaded from the Federal Reserve, with series identifier G17/IP
Major Industry Groups. We obtain data on the excess return of the composite index of
5-, 10-, and 30-year horizons of Treasury bonds, denoted as TRYRET, which is

downloaded from https://fred.stlouisfed.org/.

In addition, we study the forecasting ability of VIX and MOVE with respect to the
aggregate risk factors from the Fama and French (2015) five-factor model, which
expands their popular three-factor model with profitability (robust minus weak, RMW)
and investment (aggressive minus conservative, CMA) factors. We denote the excess
market portfolio return as EXCMKET, and the size and value factors as SMB and HML,
respectively. Moreover, given that they are not able to explain the cross-sectional
variability of momentum portfolios unless Carhart’s (1997) momentum factor (MOM) is
included in the cross section, we consider this factor in our analysis. We collect these

monthly data from Kenneth French’s website (http://mba.tuck.darmouth.edu).

We also use the Quality minus Junk (QMJ) factor of Asness, Frazzini, and
Pedersen (2014), further explored by Asness, Frazzini, Israel, Moskowitz, and Pedersen
(2018). These authors define a quality stock as an asset for which an investor would be

willing to pay a higher price. These are stocks that are safe (low required rate of return),


https://fred.stlouisfed.org/
http://mba.tuck.darmouth.edu/

profitable (high return on equity), growing (high cash flow growth), and well managed
(high dividend payout ratio). Asness et al. (2014) show that the QMJ factor, which buys
high-quality stocks and shorts low-quality (junk) stocks, earns significant risk-adjusted
returns not only in the U.S. market but also in 24 other countries. The QMJ factor is

downloaded from the AQR Capital Management Database (www.agr.com).

Finally, recent empirical evidence supports the presence of funding liquidity
across a wide range of securities. Frazzini and Pedersen (2014) show that leverage
constraints are strong and significantly reflected in the return differential between
leveraged low-beta stocks and de-leveraged high-beta stocks. The authors argue that the
positive and highly significant risk-adjusted returns relative to traditional asset pricing
models shown by portfolios sorted by the level of market beta are explained by shadow
cost-of-borrowing constraints.® The authors illustrate their argument by proposing a
market neutral BAB factor consisting of the difference between long-leveraged low-beta
stocks and short de-leveraged high-beta securities. This factor is downloaded from the

AQR Capital Management Database.
3. A Simple Decomposition of Risk-Neutral Equity and Treasury Variances

As discussed by Bekaert and Hoerova (2014), the squared VIX reflects both stock
market uncertainty and risk aversion. Uncertainty is captured by the physical expected
variance, while risk aversion is proxied by the variance risk premium (VRP), which is
the expected risk premium from selling equity variance in swap contracts. The equity

variance risk premium is defined as

VRR® = Ef" (RVARE )-VIX{, )

® See also Asness, Frazzini, Gormsen, and Pedersen (2018) for additional evidence supporting this
argument.
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where VRF’tE is the equity variance risk premium, and EtP (RVAR&l) is the expected

conditional value of the future realized variance of equity returns under the physical

probability P.

There is an extensive literature using these components as potential predictors of
stock markets returns and industrial production growth. Bollerslev, Tauchen and Zhou
(2009) show that the variance risk premium predicts future stock returns, and Bekaert
and Hoerova (2014), using an improved model specification of volatility, show that the
variance risk premium (risk aversion) has predictive power of future equity returns, but
real activity is significantly predicted by the conditional stock market variance
(uncertainty). Indeed, in bivariate regressions using both the VRP and the conditional
variance, they show that the VRP is an overall better predictor of future stock returns
than the conditional variance, and that the squared of VIX fails to forecast future
returns. On the other hand, opposite results are reported when predicting future real
activity. The expected conditional variance is a stronger predictor of future production
growth. More recently, Fan, Xiao, and Zhou (2018) propose a decomposition of the
equity VRP into a pure second order VRP and a higher order risk premium. It turns out
that the VRP displays short-term predictive power for future returns, but the higher
order risk premium contains a medium-term forecasting ability. More importantly, this
decomposition improves the market return forecasting both in-sample and out-of-
sample. Finally, when predicting either real activity or financial returns, it is important
to employ the risk-neutral variance of market equity as predictor rather than volatility
itself. Adrian, Crump, and Vogt (2017) argue that VIX strongly forecasts stock and
bond returns up to 24 month-horizon when the nonlinearity is accounted for. This result

may be associated with the recent findings of Danielsson, Valenzuela, and Zer (2018),



who argue that volatility itself is not a significant predictor of financial crises, but

unusually high and low volatilities are.

Under the same arguments, the Treasury VRP is defined as

VRR' =E] (RVARtT+1)— MOVEZ, @)

where VRPtT is the Treasury variance risk premium, and Etp (RVARtT +1) is the expected

conditional value of the future realized variance of (composite) Treasury returns under

the physical probability P.

In a parallel research to the literature of the equity variance risk premium and
using their own data on risk-neutral variance of Treasury returns, Choi et al. (2017)
show that the term structure of implied Treasury variances is downward sloping, and

that the slope has predictive power for future real activity at short horizons. Moreover,

Mueller et al. (2016) report that short-term VRF’tT predicts future bond returns at short-

term horizons, and long-term VRPtT forecasts bond returns at longer horizons.

We next decompose risk-neutral variances into expected physical variances and
the variance risk premium. There is a huge literature on the econometrics of volatility
forecasting. Rather than using high-frequency data and jumps in the spirit of Andersen,
Bollerslev, and Diebold (2007), and the threshold bipower variation proposed by Corsi,
Pirino, and Reno (2010), we follow a simple but powerful approach suggested by Zhou
(2018) in which the square of VIX and the past realized variances are employed as
independent variables. Therefore, for the case of the expected realized variance of

equity returns we forecast future realized variance as:
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E, (RVAR&l) = fio + fVIX2 + B,RVARE . 3)

In our sample period, simple regressions show that these two predictors explain

approximately 85% of the variability of future realized equity variance.

We follow a similar approach for the expected realized variance of Treasury
returns. In this case, however, we also add the expected (one year-horizon) inflation,
which we find to be a powerful predictor of future realized variance of Treasuries. The

following model gives the expected (physical) future variance of Treasury bond returns:
E, (RVARtT+1) = fo + BIMOVE? + B,RVAR{ + B3EINF,. 4)

In this case, OLS regressions show that the dependent variables explain around

66% of the variability of future realized variance of Treasury returns.

Figures 3 displays the conditional variances of equities and Treasury bonds
using expressions (3) and (4), and Figure 4 the corresponding variance risk premia.
Although, the recession-associated peaks are clear in both figures, we also observe
relevant differences among them, which motivates the competing analysis of both types

of risk-neutral volatilities for forecasting returns and real activity.

4. The In-Sample Predictability of Real Economic Activity and Financial Returns

with VIX? and MOVE?

Tables 2 to 6 contain the results of forecasting industrial production and several types of
financial asset returns with one-, 3-, 6-, and 12-month horizons. In all cases we run a
similar in-sample predicting regression,

Yt,t+T = +ﬂ1Xt +,H'C0ntr0|st +gt,t+T' T= 1,3,6,12 , (5)
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where Yy, Is either future real activity growth, AIPl;y, ., future excess market
return, EXCMKET;y, ., future excess Treasury bond return, TRYRET, ., future

HML; ¢, ., or future BAB;;,..” The predictor X; is either VIX* or MOVE? or the

variance risk premia and the expected realized variances given by equations (1), (2), (3),
and (4). All regressions control for the usual predictors employed in literature. We
include the lagged value of the dependent variable, the TERM and default (DEF)
spreads, the logarithm of the dividend yield (DY), the TED spread, and the size-based
model-free Hansen and Jagannathan (1991) volatility bound (HJ VOL). In each panel
and for each horizon, we employ the set of controls that maximize the R-squared
statistic. For saving space, we only report the intercept, and the slope estimated

coefficient, ;. It is well known that the overlap in the monthly data generates serial

correlation in the disturbance term that must be corrected when calculating standard
error. Following Bekaert and Hoerova (2014), we use the Newey-West (1987) HAC
standard errors that may improve power over the Hodrick (1992) errors as long as we

select a large number of lags.

Table 2 shows the forecasting results for the industrial production growth for the
four alternative horizons. In Panel A of Table 2, we report that the squared of VIX fails
to predict real activity. However, as in Bekaert and Hoerova (2014), the conditional
expected realized variance is a significant predictor of production growth with the
expected negative sign at the shortest horizon, and at the 3-month horizon with an
adjusted t-statistic of 1.67. Therefore, increases of the conditional equity variance tend

to decrease real activity at relatively short horizons. On top of that, the equity VRP is

"As discussed later, HML and BAB are the only two risk factors for which VIX and/or MOVE show a
significant forecasting capacity. To save space, we have decided not to report these results because they
do not add any relevant information. In any case, all results are available from the authors upon request.
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also a significant predictor of real activity with the same negative sign at the shortest
horizon. Indeed, for the one-month horizon, the slope coefficient is estimated with
relatively more precision than the coefficient for the expected conditional variance.
Higher equity-related uncertainty and/or risk aversion seem to be associated with a
decrease in real activity in the short-run. Note that at longer horizons nor VIX? neither
its components forecast significantly real activity. However, the R-squared statistic
increases from 0.20 approximately at the shortest horizon to 0.40 and 0.32 at the 3- and
6-month horizons, respectively indicating that other instruments contain relevant

information about future real activity.

Panel B of Table 2 clearly shows that either MOVE? or its components fail to
predict future real activity. At the shortest horizon, the expected variance and the VRP
have the same signs as in the case of equity variance. However, none of them are
statistically different from zero. Note that the R-squared value reflects the relative
importance of the controls employed in each of the regressions. It does not reflect the
relative predicting ability of VIX? or MOVE?. It is also important to recall the evidence
reported by Gonzalez-Urteaga et al. (2018), who show that the volatility spillovers from
MOVE to VIX are strong and statistically significant especially during bad economic
times. Hence, our new evidence suggests that the information content captured from
MOVE by VIX may be a key source of the embedded signal explaining the forecasting
ability of the uncertainty and risk aversion components of VIX2. It seems that the
combined information contained in VIX through its idiosyncratic information and the
information sent by MOVE to VIX makes the components of VIX to be strong

forecasters of real activity at relatively short horizons.

Panels A and B of Table 3 shows the results regarding the future excess market

return. The risk-neutral variance shows a significant and positive predictive power of
13



future returns at the 6- and 12-month horizon. Therefore, the two components of VIX?
predict real activity at short horizons with a negative sign, while the expected variance
component predicts stock returns at medium-long horizons with a positive sign, which
suggests a positive relation between the conditional variance and expected excess
returns. This reflects the (theoretically expected) positive sign of the relation between
risk and return for equity aggregate returns. As for real activity, MOVE? does not seem
to be able to predict future equity returns, although the VRP associated with Treasuries
presents a positive coefficient with a t-statistic of 1.57 at the shortest horizon. Again,
given the connectedness dynamics evidence reported by Gonzalez-Urteaga et al. (2018),
this does not necessarily mean that MOVE does not have relevant information with

respect to future market returns.

Panels A and B of Table 4 show the forecasting results of the (composite)
Treasury excess returns. Neither VIX? nor MOVE? are significant predictors of
Treasury excess returns. However, the equity VRP is a powerful predictor of future
Treasury returns with negative and statistically significant coefficients at the 3-, 6-, and
12-month horizons. As before, it seems very plausible that this result may be partially
due to the spillover information from MOVE to VIX already discussed above. Overall,
at medium and long horizons, the in-sample results suggest that the expected variance
of equity forecasts future equity returns, but the equity VRP forecasts Treasury bond

returns.

Along this research, we check for the forecasting ability of risk-neutral variances
regarding well-known aggregate risk factors. We analyze the five Fama-French (2015)
factors, the momentum (MOM) factor of Carhart (1997), the Quality minus Junk (QMJ)
factor of Asness et al. (2014), and Asness et al. (2018), and the Betting against Beta

Factor (BAB) of Frazzini and Pedersen (2014). Overall, risk-neutral variances of either
14



equity or Treasury bonds fail to predict risk factors. However, we find that risk-neutral
variances do predict both HML and BAB at short horizons. To the best of our
knowledge, this is the first time that this evidence has been reported. Recall that the
differences between dynamic market betas of value and growth companies tend to be
very large during bad economic times, and the BAB factor reflects funding liquidity and
tends to have highly negative returns in bad times. It is interesting that precisely the
HML and the BAB factors are the ones for which risk-neutral variances have predictive

power.

The results for the HML and BAB factors are shown in Panels A and B of Tables
5 and 6, respectively. The VIX? significantly predicts both the HML and BAB factors
with a negative sign at short horizons. Both results are estimated with high statistical
precision. Increases in the square of VIX strongly signals future bad times as proxied by
negative realized returns (or high expected returns) in the HML and BAB factors.
Interestingly, this holds even though the uncertainty and risk aversion components of
VIX? affect very differently HML and BAB. In the case of the HML factor, it is the
expected variance component (and not the VRP component) that shows forecasting
ability. However, in the case of the BAB factor, it is the equity VRP component (not the
expected variance) that has predictive ability. The future behavior of the HML factor
seems to be related more with uncertainty, while the BAB factor responds more to risk

aversion.

On the other hand, MOVE? fails to predict either HML or BAB. But, the
Treasury VRP component significantly predicts HML at the shortest and medium

horizons, and BAB at the 3-month horizon, both with positive signs.
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5. The Out-of-Sample Predictability of Real Economic Activity and Financial

Returns with VIX? and MOVE?: A Comparison Analysis

In this Section, we describe the tests and discuss the results of the out-of-sample
forecasts of future real economic activity, and future financial returns for stocks,
Treasury bonds and the HML and BAB factors using either VIX? or MOVE?. Which of
the two risk-neutral volatilities are stronger predictors of future activity and asset
returns? We employ two alternative statistics to test the out-of-sample accuracy of two
(VIX? versus MOVE?) competing models: the t-test proposed by Diebold and Mariano
(1995) and the F-statistic of McCracken (2007). In our case, the two compared models
are always nested. The restricted model contains only one predicting variable: either
VIX? or MOVE?, or the lagged dependent variable, TERM, DEF, DY, the HJ volatility
bound, and TED. Given the in-sample forecasting evidence, the predictor is selected
among the best predictors in that context across all dependent variables and horizons.
The unrestricted model contains that individual predictor in the restricted model and
either MOVE? or VIX?,

We now briefly describe this methodology. The total sample period contains T +
P observations, where the initial in-sample estimation period employs information from
one to T and the out-of-sample forecasting period is from 7+ z to T + P, 7 being the
forecasting horizon. At each forecasting period t =7 + 7, . .., T + P, we estimate the
two competing nested models using information up to the previous z periods, generate

the prediction, and compute the forecasting error. More formally, the restricted model is

Yo=aR+ B Xs_, +Ups S=7+1...t—7, (6)
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where Ygis one of the followings: industrial production growth, excess market returns,

excess Treasury bond returns, HML or BAB, and Xg is one of the competing predictors

including VIX? or MOVEZ,

The prediction under the restricted model is
Vrs ="+ B X ;. (7)
and the prediction error is
gy =Y; YRt (8)
Similarly, the unrestricted model includes the forecasting individual variable in

the restricted model and either MOVE? or VIX?, denoted as Zgin the following
equation:
Yo=a" + B X+ Z¢ , +uys S=r+1...t-T. )
The unrestricted prediction and forecasting error are
YAUs =g" "‘IBE Xs—z "‘,By Zs ¢ (10)
Gut =Ye —Yut, (11)
where Zgis any of the competing predictors including VIX? and MOVEZ We next

compute the vector of loss differentials, denoted d, which compares the two square

errors at each month t and the mean-squared forecasting error (MSE) for each model:

dy =& —U5 ,t=T+7..T+P, (12)
1 T+P
MSEg =(P-7+1)" > U, (13)
t=T+r
1 T+P
MSEy =(P-z+1)" 65 . (14)
t=T+7
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The two statistics for testing equal forecasting accuracy have the null that the
loss differentials are zero, on average. The Diebold—Mariano (1995) statistic is a t-test

expressed as

MSE(t):(P—r+1)_1/2%, (15)
S
_ 1 T+P )
where d =(P-7+1)" Z d; and Sy is a consistent estimator of the variance of the
t=T+r

loss differential that admits heteroskedasticity and autocorrelation. We employ the
Newey—-West (1987) specification and, following Clark and McCracken (2012), a lag
length k =1.5 7. Hence
) k k—|j | _ 4 T+P _ _
Sg= Y. — (P-r=j+1)" > (d¢-d)(de_j-d). (16)
j=k t=T+r
The McCracken (2007) statistic is an F-test given by

MSER — MSEy,

MSE(F )= (P-7+1)=—E
U

(17)

It must be noted that the loss differentials are measured with an error since the
beta coefficients are unknown. This implies that the exact distribution of both statistics
is also unknown and that the asymptotic distribution can only be obtained under
restrictive assumptions that include non-nested models.? For the case of nested models,
Clark and McCracken (2012) suggest deriving the asymptotic distribution by a fixed
regressor bootstrap and show that the test statistics based on the proposed bootstrap
have good size properties and better finite-sample power than alternative bootstraps.

This method is based on the wild fixed regressor bootstrap developed by Gongalves and

8 See West (1996) and Clark and McCracken (2001) for a discussion.
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Killian (2004) but adapted to the multi-step framework of out-of-sample forecasts. To
implement this method, we use the followings steps:

1. We estimate both the restricted and unrestricted models using the full sample

period. We save the coefficients of the restricted model and compute the residuals

from the unrestricted model:
Uyt =Vt —dU —,%JXS_T —,E’EJZS_T yt=1+7..T+P.

2. We assume and estimate an MA (z — 1) process to capture the implicit serial

correlation in the residuals from a z-step-ahead forecast,
L]Ut =& +018t—1+”‘+02'—1gt—(r—1)’ t=1+7..T+P.

3. We simulate a sequence of independent and identically distributed N(0,1) random
variables denoted by 7; and generate artificial residuals by using the estimates of

the MA process:
ljUt = T]tét +9177t_1ét_1+. . '+9T—177t—(1—1)ét—(2'—1)’ t=1+7.. T+P.
4. We simulate an artificial series of the dependent variable using the artificial

residual and imposing the null hypothesis that the additional variable, Zg, does

not predict:
Vi =GR+ BRX iy =
i =a + ] Xg_;Ftuy; , t=27+1..T+P.

5. We compute both the MSE(t)-statistics and MSE(F)-statistics using these artificial
data as if they were the original data.
6. We repeat steps 3 to 5 5,000 times and the p-value is the percentage of times the
simulated statistic is greater than the real statistic.
Our purpose is not to do a general horse race to decide which is the best

predicting model, but we are interested in the forecasting performance of VIX? versus
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MOVE?2. Our purpose is not to do a general horse race to decide which is the best
predicting model. Therefore, we concentrate on the predicting competency of the equity
and Treasury risk-neutral variances. Table 7 contains a summary of the out-of-sample
comparative results between VI1X? and MOVE?Z. We employ the relative mean squared

error suggested by Clark and McCracken (2012), which is given by

RMSE :\/MSEU /\/MSER , Where the restricted and unrestricted MSE are given by

equations (13) and (14), respectively. We also report the p-values associated with the
null that the t-based MSE or the F-based MSE of expressions (15) and (17) are equal to
zero, respectively. When the RMSE statistic is significantly less than one implies that
the inclusion of either VIX? or MOVE? improves the out-of-sample forecasting capacity
of the competing predictor.

Panel A of Table 7 shows the out-of-sample forecasting exercise of future real
activity. At the shortest horizon, neither VIX? nor MOVE? significantly outperforms the
other. However, both volatilities are equally necessary to forecast at the 3- and 6-month
horizons, and both fail to improve prediction of industrial production growth over each
other at the longest horizon. Note that at the 12-month horizon, the p-value of the t-
statistic indicates that we can reject that both forecasting errors are equal, but the
inclusion of MOVE? in addition to VIX? make the forecasting errors to be higher since
RMSE is larger than one. Panel B of Table 7 shows that at the shortest horizon and at
the 10% level, MOVE? better predicts future stock market excess returns than VIX2.
This is an important result. Recall that in bad economic times, the directional
connectedness from MOVE to VIX dominates the effects of VIX over MOVE.
However, for the rest of the horizons, both risk-neutral volatilities are equally relevant.
On the contrary, in Panel C of Table 7 and regarding Treasury excess returns, VIX?
significantly improves the prediction over MOVE? at the shortest horizon but, at the
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longest horizon, the opposite results is obtained. MOVE? is a superior predictor of
Treasury returns at the 12-month horizon. In Panel D, we show that VIX? significantly
outperforms MOVE? when predicting HML at the 3-month horizon, but there is nothing
statistically significant over and above this result. Finally, in Panel D of Table 7, we
show that VIX? significantly improves the forecasting of the BAB over MOVE? for
both, the shortest and longest horizons. This result suggests that funding liquidity, as
proxied by BAB, is closely related to the previous behavior of the stock market risk-
neutral volatility, at least for extreme horizons. Overall, VIX? significantly outperforms
MOVE? in 4 out of 20 cases, while MOVE? improves VIX? only in 2 cases. VIX?
(relative to MOVE?) is a necessary predictor in 45% of the cases, and MOVE? (relative
to VIX?) in 25% of all possibilities. The only obvious advantage of VIX? over MOVE?

seems to be concentrated on forecasting the HML and BAB risk factors.®
6. Conclusions

The empirical evidence regarding the relative forecasting ability between the equity
risk-neutral variance and the Treasury risk-neutral variances is surprisingly scarce. This
paper contributes to literature by performing a competing forecasting analysis between
both implied variances. The in-sample analysis shows that VIX? dominates MOVE?
either directly or indirectly through its uncertainty and risk aversion components. At the
shortest horizon, increases in the expected conditional variance of equity returns and/or
its variance risk premium are associated with a future decrease in real activity, while we
find a significant opposite sign with respect to future market returns at long horizons.
Similar to real activity, increases in the variance risk premium of equity returns

decreases Treasury returns at the three longest horizons. Interestingly, given the

° The detailed out-of-sample forecasting results using the procedure described above are reported in
Tables A.1 through A.5 in Appendix.
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counter-cyclical variation of the HML and BAB factors, we find that VIX? and its
uncertainty component are significant forecasters of both factors but with the opposite
sign to the one reported for the market excess returns, and at short rather than at long
horizons. Both VIX? and its expected conditional variance component have a negative
relation with the future behavior of HML, and VIX2 also has a significant and negative
relation with future returns of the BAB portfolio. Once again, this is the case at the
shortest horizons. Moreover, the equity variance risk premium has a positive correlation
with the future behavior of the BAB factor, while the Treasury variance risk premium

has a positive relation with the future behavior of both the HML and BAB factors.

On the other hand, our out-of-sample predicting exercise shows that, overall, for
future real activity and future excess market returns, and for most of the horizons, both
VIX? and MOVE? complement each other. Both risk-neutral volatilities seem to be
important when using an out-of-sample framework, at least regarding real activity and
market returns. Neither one seems to dominate the other in terms of the out-of-sample
predictability of future real activity. VIX? improves the forecasting of Treasury bond
returns at the shortest horizon, while MOVE? improves the forecasting capacity of the
stock market and Treasury bond returns at the shortest and longest horizons,
respectively. Note that Gonzalez-Urteaga et al. (2018) report that the total unconditional
connectedness from 1988 to 2017 between VIX and MOVE is 28%, which suggests
that, on average, there are idiosyncratic components that may explain our out-of-sample
forecasting results in terms of the complementary results between both implied
volatilities. It is true that with respect to aggregate risk factors, VIX? is the only risk-
neutral volatility with some out-of-sample forecasting capacity.

Future research may analyze how the spillover connectedness dynamics reported
by Gonzélez-Urteaga et al. (2018) affect specifically our forecasting results. In other
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words, given that MOVE is a net sender of volatility to VIX, it would be important to
study the consequences of this result for the forecasting ability of these risk-neutral
variances. More precisely, it would be interesting to find out what is the percentage of
the total predicting capacity of the square of VIX due to the risk-neutral volatility

transmission received from MOVE.
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Table 1. Summary Statistics VIX and MOVE. April 1988-September 2017

VIX MOVE

Mean 0.1949 0.0965
Volatility 0.0731 0.0259
Minimum 0.0951 0.0481
Maximum 0.5989 0.2140
Skewness 1.7367 0.9999
Kurtosis 4.8872 2.6046
AR(1) 0.8405 0.8539

The VIX index is the risk-neutral one-month expected stock market volatility for the US S&P500 index.
It is computed by averaging the weighted prices of puts and calls on the S&P500 index over a wide range
of strike prices. The MOVE index is the Merrill Lynch Option Volatility Estimate Index. It is a term
structure weighted index of the normalized implied volatility on one-month Treasury options, which are
weighted on the 2, 5, 10, and 30-year contracts. The statistics employ monthly data and observations on
the last day of the month.
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Table 2. In-Sample Forecasting of Industrial Production Growth for Alternative Horizons with
Statistically Significant Controls. Risk-Neutral Variance and its Components, May 1988-June

2017.
Panel A: Forecasting of Industrial Production Growth with V1X2
h=1 h=3 h=6 h=12
VIX? + lagged IPI + VIX? + lagged IPI + VIX? + lagged IPI + VIX? + lagged IPI +
Controls Controls Controls Controls
A 0.013 0.007 0.004 0.004
a (4.60) (2.73) (2.63) (2.91)
A 0.007 -0.016 0.000 0.016
2
P (vix) (0.05) (-1.54) (0.01) (1.45)
Adj R? 0.188 0.403 0.323 0.246
h=1 h=3 h=6 h=12
EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged
IPI + Controls IPI + Controls IPI + Controls IPI + Controls
) 0.011 0.006 0.003 0.004
a (4.71) (2.38) (2.39) (2.80)
A -0.029 -0.015 -0.003 0.013
P E
B E°RVARY) (-2.07) (-1.67) (-0.30) (1.25)
Adj R? 0.206 0.402 0.324 0.242
h=1 h=3 h=6 h=12
VRPE + lagged IP1 + VRPE + lagged IPI + VRPE + lagged IPI + VRPE + lagged IPI +
Controls Controls Controls Controls
- 0.012 0.008 0.003 0.004
@ (5.44) (3.33) (2.97) (3.06)
P -0.035 -0.000 -0.004 -0.001
E
Pr (VRPY) (2.31) (-0.03) (-0.57) (-0.32)
Adj R? 0.211 0.392 0.324 0.229
Panel B: In-Sample Forecasting of Industrial Production Growth with MOVE?
h=1 h=3 h=6 h=12
MOVE? + lagged IPI + MOVE? + lagged IPI + MOVE? + lagged IPI + MOVE? + lagged IPI +
Controls Controls Controls Controls
A 0.013 0.008 0.004 0.004
a (5.13) (3.23) (3.20) (3.03)
5 0.007 -0.031 -0.061 -0.009
2
1 (MOVE?) (0.08) (-0.56) (-1.05) (-0.16)
Adj R? 0.187 0.393 0.328 0.229
h=1 h=3 h=6 h=12
EP(RVART) + lagged EP(RVART) + lagged EP(RVAR") + lagged EP(RVART) + lagged
IPI + Controls IPI + Controls IPI + Controls IPI + Controls
A 0.013 0.008 0.004 0.003
a (4.75) (3.16) (3.05) (2.84)
5 -0.062 -0.036 -0.038 0.018
P T
Py EF(RVARY) (-0.51) (-0.48) (-0.54) (0.22)
Adj R? 0.189 0.393 0.324 0.230
h=1 h=3 h=6 h=12
VRPT + lagged IP1 + VRPT + lagged IP1 + VRPT + lagged IP1 + VRPT + lagged IP1 +
Controls Controls Controls Controls
A 0.013 0.008 0.004 0.004
a (5.06) (3.33) (3.03) (3.07)
A -0.108 0.016 0.077 0.045
.
Pr (VRPY) (-0.54) (0.28) (1.60) L1
Adj R? 0.191 0.392 0.327 0.231

This table shows the results of predicting OLS regressions of future industrial production growth for one-
3-, 6-, and 12-month horizons. The predictors are either, VIX?, MOVE?, the conditional expected realized
variance of the S&P500 index or the composite Treasury bond returns, and the variance risk premium
(VRP) of VIX2 or MOVE?. We always control for the lagged of the dependent variable, TERM, DEF, DY,
the HJ volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/
HAC standard errors.
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Table 3. In-Sample Forecasting of Excess Market Return for Alternative Horizons with
Statistically Significant Controls. Risk-Neutral Variance and its Components, May 1988-June
2017.
Panel A: Forecasting of Market Excess Return with VIX?2
h=1 h=3 h=6 h=12
VIX? + lagged VIX? + lagged VIX2 + lagged VIX2 + lagged
EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls
. 0.004 -0.011 -0.016 -0.016
a (0.87) (-1.25) (-2.14) (-1.72)
5 0.051 0.089 0.131 0.088
2
P (vix) (0.45) (0.99) (2.15) (2.92)
Adj R? 0.001 0.028 0.085 0.144
h=1 h=3 h=6 h=12
EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged
EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls
. 0.006 -0.007 -0.011 -0.013
a (2.12) (-0.82) (-1.64) (-2.09)
5 0.015 0.002 0.074 0.060
P, E
P EPRVARY) (0.19) (0.03) (2.08) (2.81)
Adj R? 0.000 0.015 0.058 0.127
h=1 h=3 h=6 h=12
VRPE + lagged VRPE + lagged VRPE + lagged VRPE + lagged
EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls
. 0.005 -0.009 -0.009 -0.011
a (2.10) (-1.13) (-1.30) (1.72)
5 -0.065 -0.123 -0.045 -0.016
E
Pr (VRPY) (-0.52) (1.12) (-0.80) (-0.49)
Adj R2 0.001 0.032 0.042 0.103
Panel B: In-Sample Forecasting of Market Excess Return with MOVE?
h=1 h=3 h=6 h=12

MOVE? + lagged
EXCMKT + Controls

MOVE? + lagged
EXCMKT + Controls

MOVE? + lagged
EXCMKT + Controls

MOVE? + lagged
EXCMKT + Controls

A 0.013 -0.003 -0.005 -0.008
a (2.09) (-0.32) (-0.74) (-1.24)
5 -0.704 -0.553 -0.385 -0.329
2

1 (MOVE?) (-0.99) (-1.04) (-1.09) (-0.95)
Adj R? 0.072 0.028 0.049 0.115
h=1 h=3 h=6 h=12

EP(RVART) + lagged EP(RVART) + lagged EP(RVAR") + lagged EP(RVART) + lagged

EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls
A 0.008 -0.004 -0.006 -0.008
a (1.43) (-0.43) (-0.84) (-1.23)
A -0.222 -0.376 -0.258 -0.276

P T
P E°(RVART) (-0.35) (-0.74) (-0.63) (-0.62)
Adj R? 0.000 0.019 0.042 0.108
h=1 h=3 h=6 h=12
VRPT + lagged VRPT + lagged VRPT + lagged VRPT + lagged

EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls EXCMKT + Controls
- 0.006 -0.007 -0.009 -0.011
a (2.38) (-0.91) (-1.19) (-1.66)
A 1.818 0.808 0.533 0.331

.

Pr (VRPY) (L57) (1.31) (1.17) (1.37)
Adj R? 0.017 0.025 0.047 0.108

This table shows the results of predicting OLS regressions of future stock market excess return for one-,
3-, 6-, and 12-month horizons. The predictors are either, VIX?, MOVE?, the conditional expected realized
variance of the S&P500 index or the composite Treasury bond returns, and the variance risk premium
(VRP) of VIX2 or MOVE?. We always control for the lagged of the dependent variable, TERM, DEF, DY,
the HJ volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/
HAC standard errors.
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Table 4. In-Sample Forecasting of Excess Treasury Bond Return for Alternative Horizons with
Statistically Significant Controls. Risk-Neutral Variance and its Components, May 1988-June

2017.
Panel A: In-Sample Forecasting of Excess Treasury Bond Return with V1X?2
h=1 h=3 h=6 h=12
VIX? + VIX? + VIXZ + VIXZ +
lagged TRYRET + lagged TRYRET + lagged TRYRET + lagged TRYRET +
Controls Controls Controls Controls
A -0.001 0.001 0.002 0.002
a (-0.58) (0.25) (1.30) (1.91)
5 0.056 0.029 0.000 0.008
2
B (vix) (1.39) (0.78) (0.01) (0.52)
Adj R? 0.075 0.001 0.019 0.162
h=1 h=3 h=6 h=12
EP(RVARE) + lagged EP(RVARE) + lagged EP(RVAREF) + lagged EP(RVAREF) + lagged
TRYRET + Controls TRYRET + Controls TRYRET + Controls TRYRET + Controls
) 0.000 0.002 0.002 0.002
a (0.03) (1.18) (1.89) (2.83)
A 0.046 0.001 -0.015 -0.003
P E
B E°RVARY) (0.98) (0.02) (-0.99) (-0.29)
Adj R? 0.069 -0.001 0.023 0.160
h=1 h=3 h=6 h=12
VRPE + VRPE + VRPE + VRPE +
lagged TRYRET + lagged TRYRET + lagged TRYRET + lagged TRYRET +
Controls Controls Controls Controls
- 0.001 0.001 0.002 0.002
a (1.02) (0.91) (1.37) (2.98)
A -0.008 -0.057 -0.035 -0.023
E
Pr (VRPY) (-0.13) (-2.31) (-2.54) (-2.49)
Adj R? 0.061 0.007 0.028 0.169
Panel B: In-Sample Forecasting of Excess Treasury Bond Return with MOVE?
h=1 h=3 h=6 h=12
MOVE? + MOVE? + MOVE? + MOVE? +
lagged TRYRET + lagged TRYRET + lagged TRYRET + lagged TRYRET +
Controls Controls Controls Controls
A 0.001 0.000 0.002 0.001
a (0.27) (0.02) (0.97) (0.99)
2 0.060 0.169 0.025 0.104
2
P (MOVE?) (0.22) (0.76) (0.18) (1.08)
Adj R? 0.064 -0.001 0.019 0.168
h=1 h=3 h=6 h=12
EP(RVART) + lagged EP(RVART) + lagged EP(RVAR") + lagged EP(RVART) + lagged
TRYRET + Controls TRYRET + Controls TRYRET + Controls TRYRET + Controls
A -0.002 0.001 0.002 0.001
« (-0.80) (0.42) (1.06) (0.82)
A 0.368 0.060 -0.034 0.096
P T
1 E°(RVART) (131) (0.26) (-0.19) (0.74)
Adj R? 0.068 -0.005 0.019 0.165
h=1 h=3 h=6 h=12
VRPT + VRPT + VRPT + VRPT +
lagged TRYRET + lagged TRYRET + lagged TRYRET + lagged TRYRET +
Controls Controls Controls Controls
- 0.001 0.002 0.002 0.002
a (1.14) (1.48) (1.76) (3.42)
A 0.582 -0.419 -0.154 -0.123
.
Pr (VRPY) (1.20) (-1.16) (-1.06) (-1.54)
Adj R? 0.069 0.004 0.021 0.164

This table shows the results of predicting OLS regressions of future Treasury bond excess return for one-
3-, 6-, and 12-month horizons. The predictors are either, VIX?, MOVE?, the conditional expected realized
variance of the S&P500 index or the composite Treasury bond returns, and the variance risk premium
(VRP) of VIX2 or MOVE?. We always control for the lagged of the dependent variable, TERM, DEF, DY,
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the HJ volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/
HAC standard errors.

32



Table 5. In-Sample Forecasting of HML for Alternative Horizons with Statistically Significant
Controls. Risk-Neutral Variance and its Components, May 1988-June 2017.

Panel A: In-Sample Forecasting of HML with VIX?

h=1 h=3 h=6 h=12
VIX? + lagged HML +  VIX? + lagged HML +  VIX? + lagged HML +  VIX? + lagged HML +
Controls Controls Controls Controls
~ 0.018 0.006 0.018 0.013
a (2.62) (2.73) (2.64) (2.49)
5 -0.107 -0.110 -0.046 -0.023
2
B (Vi) (-2.70) (-2.34) (-1.32) (-0.99)
Adj R? 0.051 0.060 0.054 0.039
h=1 h=3 h=6 h=12
EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged
HML + Controls HML + Controls HML + Controls HML + Controls
A 0.016 0.005 0.016 0.013
a (2.29) (2.35) (2.41) (2.33)
A -0.076 -0.092 -0.018 0.001
P E
B EP(RVARY) (-2.08) (2.31) (-0.79) (0.04)
Adj R? 0.042 0.052 0.041 0.031
h=1 h=3 h=6 h=12
VRPE + lagged HML +  VRPE + lagged HML +  VRPE + lagged HML +  VRPE + lagged HML +
Controls Controls Controls Controls
) 0.015 0.002 0.017 0.013
a (2.16) (0.78) (2.47) (2.49)
A 0.039 0.001 0.048 0.048
E
Py (VRPY) (0.32) (0.01) (0.94) (L61)
Adj R? 0.031 0.009 0.047 0.047
Panel B: In-Sample Forecasting of HML with MOVE?
h=1 h=3 h=6 h=12
MOVE? + lagged HML ~ MOVE? + lagged HML ~ MOVE? + lagged HML ~ MOVE? + lagged HML
+ Controls + Controls + Controls + Controls
) 0.020 0.006 0.018 0.013
a (2.53) (1.38) (2.46) (2.37)
A -0.517 -0.432 -0.179 -0.038
2
1 (MOVE?) (-1.63) (-1.06) (0.77) (-0.30)
Adj R? 0.041 0.027 0.043 0.032
h=1 h=3 h=6 h=12
EP(RVART) + lagged EP(RVART) + lagged EP(RVAR") + lagged EP(RVAR") + lagged
HML + Controls HML + Controls HML + Controls HML + Controls
A 0.018 0.005 0.016 0.013
a (1.73) (1.04) (2.05) (2.19)
A -0.270 -0.369 -0.018 -0.001
P T
1 E°(RVART) (-0.51) (-0.76) (-0.07) (-0.04)
Adj R? 0.032 0.018 0.038 0.031
h=1 h=3 h=6 h=12
VRPT + lagged HML +  VRPT + lagged HML +  VRPT + lagged HML +  VRPT + lagged HML +
Controls Controls Controls Controls
A 0.013 0.001 0.015 0.012
a (1.82) (0.79) (2.34) (2.19)
A 1.128 0.611 0.537 0.108
.
Pr (VRPY) (2.84) (1.52) 2.32) (0.92)
Adj R? 0.045 0.020 0.053 0.032

This table shows the results of predicting OLS regressions of future HML return for one, -3-, 6-, and 12-
month horizons. The predictors are either, VIX?, MOVE?, the conditional expected realized variance of
the S&P500 index or the composite Treasury bond returns, and the variance risk premium (VRP) of VIX?
or MOVE? We always control for the lagged of the dependent variable, TERM, DEF, DY, the HJ
volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/ HAC

standard errors.
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Table 6. In-Sample Forecasting of BAB for Alternative Horizons with Statistically Significant

Controls. Risk-Neutral Variance and its Components, May 1988-June 2017.

Panel A: In-Sample Forecasting of BAB with VI1X?

h=1 h=3 h=6 h=12
VIX? + lagged BAB +  VIX?+lagged BAB +  VIX?+ lagged BAB +  VIX? + lagged BAB +
Controls Controls Controls Controls
~ 0.046 0.041 0.048 0.030
a (4.68) (4.07) (4.39) (2.70)
5 -0.221 -0.134 -0.077 -0.058
2
B (vix) (-3.25) (-1.74) (-1.37) (-1.28)
Adj R? 0.109 0.173 0.219 0.295
h=1 h=3 h=6 h=12
EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged EP(RVARE) + lagged
BAB + Controls BAB + Controls BAB + Controls BAB + Controls
A 0.039 0.036 0.037 0.027
« (4.13) (3.79) (3.99) (2.48)
P -0.044 -0.012 0.005 -0.013
P E
b1 EF(RVARY) (-0.55) (-0.18) (0.11) (-0.38)
Adj R? 0.061 0.129 0.196 0.278
h=1 h=3 h=6 h=12
VRPE + lagged BAB +  VRPE + lagged BAB +  VRPE + lagged BAB +  VRPE + lagged BAB +
Controls Controls Controls Controls
- 0.042 0.038 0.039 0.028
a (4.65) (4.07) (4.31) (2.62)
5 0.310 0.217 0.149 0.072
E
Pr (VRPY) (3.14) (3.76) (3.72) (1.90)
Adj R? 0.113 0.192 0.243 0.293
Panel B: In-Sample Forecasting of BAB with MOVE?
h=1 h=3 h=6 h=12
MOVE? + lagged BAB  MOVE? + lagged BAB  MOVE? + lagged BAB  MOVE? + lagged BAB
+ Controls + Controls + Controls + Controls
- 0.044 0.040 0.038 0.028
a (4.59) (4.24) (4.29) (2.47)
5 -0.508 -0.339 -0.044 -0.088
2
1 (MOVE?) (-1.27) (-1.03) (-0.15) (-0.33)
Adj R? 0.064 0.135 0.196 0.278
h=1 h=3 h=6 h=12
EP(RVART) + lagged EP(RVART) + lagged EP(RVAR") + lagged EP(RVART) + lagged
BAB + Controls BAB + Controls BAB + Controls BAB + Controls
A 0.041 0.036 0.036 0.027
a (4.23) (3.94) (3.92) (2.43)
A -0.287 -0.022 0.098 -0.076
P T
1 E°(RVART) (-0.56) (-0.06) (0.25) (-0.24)
Adj R? 0.060 0.129 0.199 0.277
h=1 h=3 h=6 h=12
VRPT + lagged BAB +  VRPT + lagged BAB +  VRPT + lagged BAB +  VRPT + lagged BAB +
Controls Controls Controls Controls
- 0.038 0.035 0.037 0.027
a (3.97) (3.74) (3.99) (2.45)
A 0.838 0.878 0.299 0.094
.
B (VRPY) (1.16) (2.54) (1.09) (0.38)
Adj R? 0.064 0.143 0.199 0.277

This table shows the results of predicting OLS regressions of future BAB return for one, -3-, 6-, and 12-
month horizons. The predictors are either, VIX?, MOVE?, the conditional expected realized variance of
the S&P500 index or the composite Treasury bond returns, and the variance risk premium (VRP) of VIX?2
or MOVE? We always control for the lagged of the dependent variable, TERM, DEF, DY, the HJ
volatility bound of Nieto and Rubio (2014) and TED. We report the t-statistic from Newey-West/ HAC

standard errors.
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Table 7. Out-of-Sample Forecasting Performance of VIX? and MOVE?, May 1988-June 2017.

Panel A: Out-of-Sample Forecasting of Industrial Production Growth

h=1 h=3 h=6 h=12

VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE?
improves improves improves improves improves improves improves improves
MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX?

RMSE 0.987 1.005 0.966 0.997 0.996 0.990 1.013 1.001
p_
value 0.322 0.749 0.004 0.030 0.023 0.016 0.095 0.040
(t)
p_
value 0.291 0.701 0.000 0.015 0.005 0.003 0.856 0.057
R
Result NO NO YES YES YES YES NO NO
Panel B: Out-of-Sample Forecasting of Stock Market Excess Return
h=1 h=3 h=6 h=12
VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE?
improves improves improves improves improves improves improves improves
MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX?
RMSE 1.002 0.997 0.997 0.989 0.977 0.983 0.986 0.994
p_
value 0.277 0.064 0.064 0.006 0.005 0.001 0.003 0.023
(t)
p_
value 0.250 0.073 0.051 0.002 0.003 0.000 0.000 0.005
(F)
Result NO YES YES YES YES YES YES YES
Panel C: Out-of-Sample Forecasting of Treasury Bond Excess Return
h=1 h=3 h=6 h=12
VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE?
improves improves improves improves improves improves improves improves
MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX?
RMSE 0.993 1.004 1.004 1.005 1.005 1.007 1.034 0.995
p_
value 0.047 0.444 0.100 0.331 0.147 0.271 0.248 0.018
(t)
p_
value 0.030 0.513 0.291 0.463 0.384 0.612 0.999 0.006
)
Result YES NO NO NO NO NO NO YES
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Table 7 (continuation). Out-of-Sample Forecasting Performance of VIX? and MOVE?, May
1988-June 2017.

Panel D: Out-of-Sample Forecasting of HML

h=1 h=3 h=6 h=12

VIX?2 MOVE? VIX? MOVE? VIX2 MOVE? VIX? MOVE?
improves  improves  improves improves improves  improves  improves  improves
MOVE? VIX?2 MOVE? VIX?2 MOVE? VIX?2 MOVE? VIX2

RMSE 1.005 1.005 0.990 1.004 1.012 1.008 1.013 1.003
p"g‘)'“e 0.846 0.851 0.024 0.197 0.117 0.624 0.095 0.123
p"(’g')“e 0.722 0.728 0.001 0.445 0.758 0.704 0.963 0.142
Result NO NO YES NO NO NO NO NO

Panel E: Out-of-Sample Forecasting of BAB

h=1 h=3 h=6 h=12

VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE?
improves  improves  improves improves improves  improves improves  improves
MOVE? VIX? MOVE? VIX? MOVE? VIX? MOVE? VIX?

RMSE 0.989 1.003 1.021 1.005 1.010 1.004 0.922 1.002
p"g")'”e 0.160 0.911 0.144 0.113 0.032 0.107 0.013 0.041
p"(’g')“e 0.053 0.856 0.991 0.261 0.758 0.266 0.000 0.101
Result YES NO NO NO NO NO YES NO

This table shows the out-of-sample forecast accuracy of either VIX? or MOVE?, comparing the
unrestricted model that contains either VIX? or MOVE? and the additional standard predictor with the
restricted model that includes only the standard predictor where this predictor can also be VIX? or
MOVE? RMSE is the relative mean-squared forecasting error that compares the mean-squared
forecasting error of the restricted model and the mean-squared forecasting error of the unrestricted model.
The p-value (t) and p-value (F) are two statistics to test the equal forecasting ability of the two models
associated with expressions (28) and (30). They are obtained by an efficient bootstrap method for
simulating asymptotic critical values.
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Figure 1

VIX and MOVE Daily Data April 4, 1988- October 5, 2017
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Figure 3

Expected Conditional Variances for Equity and Treasury Bond Returns:

May 1988-August 2017
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Figure 4

Variance Risk Premium for Equity and Treasury Bond Returns:

May 1988-August 2017
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APPENDIX: Out-of-Sample Competing Performance of VIX? and MOVE?

In Tables A.1 to A.5 shown below, we report the detailed results discussed in the out-
of-sample analysis of Section 5 of the paper. All tables have the same structure. For
each horizon, we present the in-sample and out-of-sample results for the same
competing predictors. In the first panel, for a given horizon, we show the in-sample
evidence with a regression of two independent variables, namely each of the competing
predictors and either VIX? or MOVE?. In the second panel, again for a given horizon,
we report the pairwise out-of-sample forecasting comparison. This is to say, we
compare either VIX? or MOVE? against each of the competitors and report the RMSE

and the corresponding p-values.

With respect to the forecasting of real activity reported in Table A.1, DEF, HJ
volatility bound and TED are all significant predictors with a negative sign at the short
horizons. At longer horizons, TERM becomes a significant predictor with a positive
sign, but the HJ bound and TED remain significantly different from zero. Except for
TED, all results have been found before in literature. In Table A.2, we show that only
TERM and DY predict future excess market returns at longer horizons and with the
expected positive sign. Table A.3 contains the results regarding Treasury excess returns.
DEF is a significant predictor for all horizons with a negative sign, while TED also
forecast bond returns at the 3-month horizon. The results about HML are displayed in
Table A.4. DEF with a positive sign, and the HJ bound with a negative sign are
significant predictors of the value-growth risk-factor at all horizons and, finally, Table
A.5 shows that the HJ volatility bound with a negative sign and TERM with a positive

sign are significant predictor of the BAB factor at practically all horizons.
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Table A.1 Out-of-Sample Industrial Production Growth Forecasting Power of VIX?2 and MOVE?
against Alternative Standard Predictors, May 1988-June 2017.

Panel A: In-Sample Forecasting Ability: 7 = 1

2 2
APl por = a+ P Xe + BVIXE +étpir APy =a+ Xt + foMOVEL + 6111,
Lag HJ ) Lag HJ -,
1Pl TERM DEF DY VOL Move TED 1Pl TERM DEF DY VOL Vix TED
. 0003 0003 0008 0006 0008 0004 0004 | 0003 0003 0009 0005 0009 0004  0.004
o (5.42) (3.08) (5.16) (3.67) (371 (426) (6.29) | (312) (238) (5.22) (271) (3.30) (4.26)  (3.79)
P 0.162 0.036 -0.287 -0.112 -0.008 -0.067 -0.162 0.171 0.059 -0.303 -0.076 -0.009 -0.040 -0.186
Pl @as)  L15) (341 (L77)  (220) (068) (238 | (227) (205 (4il) (L12) (231) (243 (-2.48)
A 0041  -0047 0010 -0046 -0.045 -0.040 0040 | -0190 0262 -0.051 -0221 -0.235 -0.067  -0.189
B2 (308) (279) (079) (324) (318) (243) (274) | (178) (213) (067) (185) (216) (0.68) (L70)
AdjR? 0101 0085 0151 0095 0102 0083 0097 | 0072 0057 0150 0051 0072  0.083 0066
Panel A.1: Out-of-Sample Forecasting Ability: z = 1
Unrestricted : AIPl 1, = o+ By X¢ + BVIXE + & 1o Unrestricted : AIPl ., = a + 1 X + SoMOVEE + 11,
Restricted : AIPlty . =+ B Xt + &t tyr Restricted : AIPlyt . =a + B X¢ + &t gy r
Lag HJ 2 Lag HJ o
1Pl TERM DEF DY VOL Move TED 1Pl TERM DEF DY VOL Vix TED
RMSE 0977 0964 1,013 0960 0967 0987 0979 | 0996 0979 1012 0988 0988 1005 0995
p'(‘t’)a' 0018 0043 0994 0025 0507 0322 0054 | 0138 0106 095 0122 0576 0749 0233
p("F’i" 0003 0005 0980 0001 0326 0291 0026 | 0123 0037 0916 0070 0531 0701 0213
Panel B: In-Sample Forecasting Ability: z = 3
2 2
APy =a+ P Xe + BVIXE +épir APy =a+ Xt + foMOVES + 6t p1p
Lag HJ , Lag HJ L,
1Pl TERM DEF DY VOL Move TED 1Pl TERM DEF DY VOL Vix TED
. 0002 0003 0007 0006 0008 0004 0004 | 0002 0003 0008 0005 0009 0004  0.004
a (398)  (343) (461) (397) (3.63) (474) (7.66) | (265) (255  (4.80)  (2.83)  (3.34)  (4.74)  (4.25)
A 0455 0045 0181 -0092 0008 -0.094 -0179 | 0504 0072  -0.226 -0048 -0.009 -0.042  -0.200
BL Gsay  Le0) (237 (L62) (216 (0.86) (242) | (6.14) (268) (409 (0.76) (243 (2.90) (-252)
P -0.028 -0.050 -0.027 -0.050 -0.048 -0.042 -0.044 -0.107 -0.300 -0.130 -0.261 -0.266 -0.094 -0.216
B2 (a3 (320) (183 (370) (379 (290) (3.80) | (139) (233 (L37) (200) (241) (086) (2.14)
AdjR? 0365 0213 0255 0217 0245 0208 0236 | 0331 0161 0244 0130 0183 0208  0.169
Panel B.1: Out-of-Sample Forecasting Ability: z = 3
Unrestricted : AIPlyy . = a + B Xy + BVIXE +6pqpr | Unrestricted : APl o = a + i Xy + SoMOVEE + 6147
Restricted : AIPlit, . =a + S Xt + &t 7 Restricted : AIPli ¢, . =a + f1 Xt + &t 7
'I‘glg TERM  DEF DY V"('JJL Move?  TED %Slg TERM  DEF DY V%JL Vi TED
RMSE 0995 0903 1,006 0895 0907 0966 0934 | 0994 0922 0991 0947 0943 0997 0963
p_(\t/)al 0.014 0.003 0.069 0.001 0.009 0.004 0.007 0.016 0.002 0.005 0.004 0.011 0.030 0.006
p('":’?' 0000 0000 0687 0000 0000 0000 0000 | 0002 0000 0003 0000 0000 0015  0.000
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Table A.1 (continuation). Out-of-Sample Industrial Production Growth Forecasting Power of

VIX? and MOVE? against Alternative Standard Predictors, May 1988-June 2017.

Panel C: In-Sample Forecasting Ability: 7 =6

2 2
APl por = a+ P Xe + BVIXE +étpir APy =a+ Xt + foMOVEL + 6111,
Lag HJ ) Lag HJ -,
1Pl TERM DEF DY VOL Move TED 1Pl TERM DEF DY VOL Vix TED
- 0002 0002 0006 0004 0007 0004 0003 | 0002 0003 0006 0004 0008 0004  0.004
o (2.81) (2749 (359  (3.09) (3.00) (458) (7.62) | (276) (261)  (4.09) (262)  (3.10) (4.58)  (4.74)
P 0.362 0.049 -0.147 -0.050 -0.007 -0.131 -0.209 0.371 0.073 -0.156 -0.011 -0.008 -0.024 -0.206
Pl @iy @ss)  (L77) (092 (L79) (113 (248 | (243)  (269) (266) (0.19) (213 (211) (-28)
A 0020 -003 0017 003 003 -0.024 -0028 | -0121 0262 0134 0232 0227 -0.131L -0.174
B2 (238) (273) (134 (302 (316) (211) (335) | (143) (236) (1d6) (201) (238) (L13) (207)
Adj R? 0.234 0.150 0.174 0.134 0.176 0.150 0.185 0.225 0.163 0.187 0.115 0.172 0.150 0.171
Panel C.1: Out-of-Sample Forecasting Ability: z =6
Unrestricted : APl g, = a+ B X¢ + BVIXE + 5144 | Unrestricted : APl g, = a + i X + SoMOVEE + 11,
Restricted : AIPlyt . =a + B X + &gy r Restricted : AIPlyt . =a + B X¢ + &t gy r
Lag HJ ) Lag HJ i 2
1Pl TERM DEF DY VOL Move TED 1Pl TERM DEF DY VOL Vix TED
RMSE 1008 0943 1012 0933 0952 0996 0979 | 0989 0925 0989 0948 0947 0990 0971
p'(‘t’)a' 0092 0001 008 0000 0010 0023 0019 | 002 0003 0008 0014 0005 0016 0041
p(“F’i" 0706 0000 0922 0000 0000 0005 0000 | 0001 0000 0000 0000 0000 0003  0.001
Panel D: In-Sample Forecasting Ability: 7 = 12
2 2
APy =a+ P Xe + BVIXE +épir APl r =a+ B Xi + BoMOVEL + 6y,
Lag HJ ) Lag HJ -,
1Pl TERM DEF DY VOL Move TED 1Pl TERM DEF DY VOL Vix TED
- 0002 0001 0004 0002 0007 0003 0003 | 0002 0002 0004 0002 0007 0003  0.003
a (3.21)  (1.56)  (2.88)  (1.41)  (299)  (422)  (681) | (3.03) (2.24) (329)  (1.44) (289 (422) (477)
A 0095 0060 -0.103 0031 -0.008 -0079 -0.248 | 0.089 0074  -0.094 0055  -0.008 -0.010 -0.245
Bl @5 @39 (132 (062 (L85 (067) (234 | (055) (265) (L72) (LOI)  (2.09) (0.94) (-3.03)
P -0.014 -0.017 -0.004 -0.017 -0.015 -0.010 -0.007 -0.101 -0.151 -0.060 -0.135 -0.115 -0.079 -0.048
B2 (-239)  (-247) (-048) (-2.63) (-2.36)  (-0.94)  (-1.09) | (-1.18) (-1.79) (-0.75)  (-1.55)  (-1.59)  (-0.67)  (-0.79)
AdjR? 0043 0081 0066 0039 0107 0047 0128 | 0045 0105 0073 0048 0114 0047 0128
Panel D.1: Out-of-Sample Forecasting Ability: = 12
Unrestricted : AIPlyy . = a + B Xy + BVIXE +6pqpr | Unrestricted : APl o = a + i Xy + SoMOVEE + 6147
Restricted : AIPlit, . =a + S Xt + &t 7 Restricted : AIPli ¢, . =a + f1 Xt + &t 7
Lag HJ ) Lag HJ -,
1Pl TERM DEF DY VOL Move TED 1Pl TERM DEF DY VOL Vix' TED
RMSE 1005 0987 1018 0981 1007 1013 1026 | 0998 0972 1004 0980 0996 1001  1.009
p—(\t/)al 0.090 0.014 0.399 0.005 0.059 0.095 0.260 0.027 0.010 0.151 0.011 0.056 0.040 0.070
p("‘:’;*' 0502 0000 0981 0000 0432 0856 0996 | 0018 0000 0221 0000 0019 0057  0.868
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Table A.2. Out-of-Sample Excess Market Return Forecasting Power of VIX? and MOVE?
against Alternative Standard Predictors, May 1988-June 2017.

Panel A: In-Sample Forecasting Ability: z = 1

EXCMKET; 17 = @+ B Xt + BVIXE + 6147 EXCMKET; 147 = + By X¢ + foMOVEE + ey 17
Lag HJ Lag HJ
EXC TERM DEF DY VOL Move? TED EXC TERM DEF DY VOL Vix? TED
MKT MKT
A 0.004 0.005 0.013 -0.004 0.025 0.014 0.007 0.013 0.012 0.012 0.002 0.033 0.014 0.014
o (0.86)  (0.80)  (1.35) (0.41) (143) (L95) (1.52) | (2.08) (L79) (L17) (0.17)  (L85)  (L95)  (2.21)

5 0092 0054 -0.383 0480 -0034 -1413 -0.992 | 0.048 0130 0142 0676 -0.032 0145 -0.550
A (152)  (0.27) (-0.88) (L32) (-1.28) (-1.75) (-111) | (0.90) (0.61)  (0.35)  (1.81)  (-138) (192)  (-0.81)

5 0052 0012 0060 0009 0020 0145 0056 | -0.700 -0.837 -0.879 -0.964 -0.770  -1413  -0.606
B2 (046)  (0.10) (0.54)  (0.07)  (019)  (1.92)  (0.65) | (-0.98) (-1.11) (-1.22) (-1.28) (-114) (-175) (-0.97)

Adj R? 0.001 -0.005  -0.003 0.000 0.003 0.017 0.005 0.008 0.007 0.006 0.016 0.014 0.017 0.009

Panel A.1: Out-of-Sample Forecasting Ability: z = 1

Unrestricted : EXCMKETy ., =a + i Xt + ﬁZVIth +étper | Unrestricted : EXCMKET ¢, =a+ S X¢ + B2 MOVEt2 + &ty

Restricted : EXCMKET ¢, , =a + B Xt + &t t4r Restricted : EXCMKET; ¢, = a + S Xt + &t 41

Lag HJ Lag HI

EXC TERM  DEF DY voL Mowe’  TED | EXC  TERM  DEF DY voL V¢  TED
MKT MKT

RMSE 1.010 1.013 1,007 1.016 1.013 1.002 1.010 1.008 1.007 1.005 1.004 1.009 0.997 1.009

p'(‘t’)a' 0540 0622 0260  0.663 0547 0277 0553 | 0460 0308 0259 0192 0522 0064  0.599
p(-'\:/?I 0473 0608 0303 0731 0557 0250 0512 | 0476 0374 0288 0193 0577 0073  0.586
Panel B: In-Sample Forecasting Ability: z = 3

EXCMKETt t+r =a+ ﬂlxt + ﬂleXtZ + &t t+7 EXCMKETt’t_H- =+ ,let + ﬂz '\/loVEt2 + gt,t+‘[
Lag HJ Lag HI
EXC TERM  DEF DY o Move TED | EXC TERM  DEF DY o V¢  TED
MKT MKT
. 0001 0003 0012 -0.007 0020 0010 0005 | 0010 0008 0010 -0002 0025 0010 0010
a 034) (050 (L36) (0.78) (131)  (183)  (1.33) | (L97) (L44)  (L03) (-027) (158)  (L83)  (2.04)

5 0143 0089  -0430 0536 -0028 -0988 -0.732 | 0035 0133 0045 0663 -0.026 0127  -0.402
A (156)  (0.47) (-097) (162) (-1.16) (-1.65) (-1.07) | (0.42)  (0.7)  (041)  (1.95) (-115)  (L96)  (-0.79)

/} 0088 0035 0090 0032 0043 0127 0069 | -0.380 -0.488 -0.467 -0.606 -0.418 -0.988  -0.287
2 0.99) (0.36) (0.96) (0.32)  (0.48)  (L96)  (0.93) | (-0.70) (-0.86) (-0.90) (-1.06) (-0.80) (-1.65)  (-0.57)

Adj R? 0.011 -0.001 0.006 0.015 0.014 0.027 0.014 0.005 0.008 0.004 0.031 0.018 0.027 0.007

Panel B.1: Out-of-Sample Forecasting Ability: = 3

Unrestricted : EXCMKET ¢, , =a + S X + /32VIXt2 +étter Unrestricted : EXCMKET; ¢, = a + B Xt + /fZMOVEt2 +étter

Restricted : EXCMKETLH_T =a+ :let + gt,t-H.' Restricted : EXCMKETLH_T =a+ ﬂlxt + gt,t+T

Lag HJ Lag HJ

EXC TERM DEF DY VOL Move? TED EXC TERM DEF DY VOL Vix? TED
MKT MKT

RMSE 1.004 1.017 1,006 1.015 1.012 0.997 1.008 1.005 1.003 1.003 0.999 1.007 0.989 1.006

p-(\t/)al 0066 0291 0066 0158 0168 0064 0097 | 0113 0057 0068 0083 0106 0006 0117
p('l‘:’;l 0309 0982 0534 0995 0887 0051 0508 | 0286 0219 0152 0029 0682 0002 0556
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Table A.2 (continuation). Out-of-Sample Excess Market Return Forecasting Power of VIX? and
MOVE? against Alternative Standard Predictors, May 1988-June 2017.

Panel C: In-Sample Forecasting Ability: 7 =6

EXCMKET; 17 = @+ B Xt + BVIXE + 6147 EXCMKET; 147 = + By X¢ + foMOVEE + ey 17
Lag HJ Lag HJ
EXC TERM DEF DY VOL Move? TED EXC TERM DEF DY VOL Vix? TED
MKT MKT
A -0.001 0.000 0.010 -0.010 0.018 0.008 0.003 0.008 0.005 0.006 -0.005 0.022 0.008 0.008
o (-0.14)  (0.06)  (135) (-1.48) (1.37)  (245)  (1.36) | (2.25) (L26) (0.85) (-0.75) (L58)  (2.45)  (2.37)

5 0181 0165 -0418 0611  -0027 -0.862 -0.583 | -0.006 0192 0096  0.699  -0.024 0146  -0.257
A (145)  (1.05) (-102) (213) (-1.20) (-1.79)  (-1.08) | (-0.04) (L22)  (027)  (2.23) (-114) (2.83)  (-0.66)

5 0120 0066 0120 0064 0074 0146 0095 | -0.236 -0.301 -0290 -0.396 -0.205 -0.862  -0.112
B2 (213)  (1.25) (217) (L19)  (147)  (2.83)  (2.04) | (-0.65) (-0.79) (-0.93) (-1.08) (-0.56) (-1.79)  (-0.30)

Adj R? 0.034 0.024 0.029 0.056 0.041 0.054 0.034 -0.001 0.013 0.000 0.052 0.021 0.054 0.001

Panel C.1: Out-of-Sample Forecasting Ability: z =6

Unrestricted : EXCMKETy ., =a + i Xt + ﬁZVIth +étper | Unrestricted : EXCMKET ¢, =a+ S X¢ + B2 MOVEt2 + &ty

Restricted : EXCMKET ¢, , =a + B Xt + &t t4r Restricted : EXCMKET; ¢, = a + S Xt + &t 41

Lag HJ Lag HI

EXC TERM  DEF DY voL Mowe’  TED | EXC  TERM  DEF DY voL V¢  TED
MKT MKT

RMSE 0.983 1.008 0.988 0.996 0.996 0.977 0.989 1.005 1.003 1.004 1.000 1.007 0.983 1.007

p'(‘t’)a' 0004 0117 0017 0019 003 0005 0008 | 0.07 0046 0196 0029 0117 0001 0183
p('":’?' 0000 0612 0001 0008 0016 0003 0001 | 0297 0152 0322 0027 0705 0000  0.689
Panel D: In-Sample Forecasting Ability: 7 = 12

EXCMKETt t+r = a+ ﬂlxt + ﬂleXtZ + &t t+7 EXCMKETt’t_H- =a+ ,let + ﬂz '\/IOVEt2 + gt,t+‘[
Lag HJ Lag HJ
EXC TERM  DEF DY voL Move? TED | EXC  TERM  DEF DY voL V¢ TED
MKT MKT
. 0001  -0.002 0006 -0.009 0018 0006 0004 | 0007 0002 0004 -0006 0020 0006  0.006
o (051) (056) (L07)  (L71)  (193) (248  (205) | (L77)  (057)  (0.66) (-1.06)  (1.82)  (248)  (L82)

5 0130 0274  -0138 0602  -0027 -0490 -0.695 | -0.020 0293 0162  0.665 -0.025 0093  -0.470
A (089)  (2.28) (-0.49) (255) (-1.59) (-1.23) (-151) | (-013) (230) (0.62)  (251)  (-149) (211)  (-1.18)

[} 0074 0048 0066 0044 0055 0093 0081 | -0113 -0203 -0.195 -0249 -0.065 -0.490  0.099
2 (246) (170) (212) (L75)  (1.67) (211)  (2.14) | (-0.33) (-0.59) (-0.61) (-0.77)  (-0.19) (-1.23)  (0.32)

Adj R? 0.024 0.070 0.016 0.088 0.065 0.039 0.058 -0.004 0.058 0.001 0.082 0.040 0.039 0.013

Panel D.1: Out-of-Sample Forecasting Ability: r = 12

Unrestricted : EXCMKET ¢, , =a + S X + /32VIXt2 +étter Unrestricted : EXCMKET; ¢, = a + B Xt + /fZMOVEt2 +étter

Restricted : EXCMKETLH_T =a+ :let + 5t,t+r Restricted : EXCMKETLH_T =a+ ﬂlxt + gt,t+T
Lag HJ 2 Lag HJ -
EMKT TERM DEF DY VOL Move TED EMKT TERM DEF DY VOL Vix' TED

RMSE 0.987 1.009 0.997 0.995 0.999 0.986 0.989 1.007 1.007 1.004 1.002 1.018 0.994 1.010

p-(\t/)al 0002 0229 0040 0028 0034 0003 0019 | 0079 0108 0131 0105 0216 0023 0227
p('l‘:’;l 0000 0911 0018 0008 0032 0000 0002 | 0770 0643 0504 0145 0996 0005 0776
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Table A.3. Out-of-Sample Excess Treasury Bond Return Forecasting Power of VIX?2 and
MOVE? against Alternative Standard Predictors, May 1988-June 2017.

Panel A: In-Sample Forecasting Ability: z = 1

TRYRET 147 = & + BiX¢ + BVIXE + g4z

TRYRET, 147 = & + B X¢ + SaMOVE? + & 47

Lag

Lag

TRY TERM  DEF DY VFC')JL Move2 TED | TRY TERM  DEF DY vlgl_ Vi  TED
RET RET
- 0001 -0.001 0007 -0004 0002 000l -0.001 | 0001 0001 0002 -0001 0003 0001  0.001
a (-0.58) (-0.46) (152) (-079) (0.33)  (0.35) (0.38) | (0.26) (0.32)  (0.44) (-0.24)  (0.46)  (0.35)  (0.42)
5 0242  -0005 -0.513 0108 -0.006 -0398 -0.234 | 0256 -0.014 -0.088 0111  -0004 0113  -0.034
A (5.09)  (0.05) (-209) (052) (-0.60) (-L.47) (-101) | (575 (-0.13) (-0.39) (0.55) (0.40) (233)  (-0.13)
5 0057 0076 0141 0075 0077 0113 0084 | 0071 009 0146 0062 0094 -0.398 0074
B2 (145) (0.88) (327) (L87) (192)  (233) (1.89) | (0.27) (029)  (044)  (0.18)  (0.28) (-L47)  (0.22)
AdjR? 0072 0014 0034 0015 0016 0021 0016 | 0062 -0.005 -0.004 -0.004 -0005 0021  -0.006
Panel A.1: Out-of-Sample Forecasting Ability: z = 1
Unrestricted : TRYRET; ., . = + B X¢ + ,b’ZVIXt2 +&tter Unrestricted : TRYRETy ¢, , = a + S Xt + fp MOVEt2 + &ty
Restricted : TRYRET ¢, , =a + S Xt + &t t4r Restricted : TRYRETy ., =a + S Xt + &t t4r
Lag HJ Lag HJ
TRY TERM  DEF DY voL Mowe? TED | TRY TERM  DEF DY voL V¢ TED
RET RET
RMSE 1006 1005 098 1011 1005 0993 1000 | 1014 1015 1009 1015 1017 1004  1.014
p-(\t/)al 0231 0149 0011 0204 0420 0047 0093 | 0770 0674 0399 0589 0471 0444  0.600
p(-|\=/§| 0398 0327 0004 0671 0453 0030 0095 | 0.858 0860 0593 0864 0578 0513 0827
Panel B: In-Sample Forecasting Ability: z = 3
TRYRET 147 = & + By X¢ + BNVIXE + &1 p4r TRYRET, 147 = & + A1 X¢ + BaMOVE? + & 47
Lag HJ Lag HJ
TRY TERM  DEF DY voL Mowe? TED | TRY TERM  DEF DY voL V¢ TED
RET RET
- 0000 -0001 0009 -0.001 0003 0000 0003 | 0000 -0.001 0005 -0000 0002 0000  0.001
a (025) (038) (229) (-012) (050) (0.02)  (1.36) | (0.02) (-0.34) (1.30) (-0.08) (0.36) (0.02)  (0.26)
5 0012 0079 0473 0049 -0005 0079 0606 | 0.000 0066 -0304 0020 -0.004 0021 0353
Pl (o18) (19 (258 (025 (047) (035 (210) | (000) (065 (162 (0.10) (041) (053  (165)
5 0029 0028 0089 0028 0030 0021 -0.064 | 0170 0145 0362 0164 0173 0079 0015
P2 (078)  (0.80) (248) (0.79)  (086)  (053) (-L71) | (0.77)  (0.64)  (137)  (0.74)  (0.78)  (0.35)  (0.08)
AdjR? 0001 0005 0039 0001 0002 0001 0016 | -0000 0002 0020 -0.001 0000 0001  0.010
Panel B.1: Out-of-Sample Forecasting Ability: = 3
Unrestricted : TRYRET; ¢, . = + S X + ﬁZVIth +&ttar Unrestricted : TRYRET; 1, = a + f1 Xt + B MOVEt2 +étter
Restricted TRYRETt tHr = Q + ,B]_Xt + & t+r Restricted :TRYRETM_H- =a+ ﬁlxt + & t+r
Lag HJ Lag HJ
TRY TERM  DEF DY voL Move? TED | TRY  TERM  DEF DY voL V¢ TED
RET RET
RMSE 1006 1003 0983 1007 1006 1004 1009 | 1006 1007 0996 1005 1009 1005 1006
p'(‘t’)a' 0085 0120 0011 0179 0060 0100 0253 | 0.244 0333 0022 0199 0344 0331 0440
p('":’;' 0371 0197 0000 0721 0525 0291 0559 | 0431 0678 0011 0258 0906 0463 0472
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Table A.3 (continuation). Out-of-Sample Excess Treasury Bond Return Forecasting Power of
VIX? and MOVE? against Alternative Standard Predictors, May 1988-June 2017.

Panel C: In-Sample Forecasting Ability: 7 =6

TRYRET 147 = & + BiX¢ + BVIXE + g4z

TRYRET, 147 = & + B X¢ + SaMOVE? + & 47

Lag HJ Lag HJ
TRY TERM  DEF DY voL Move? TED | TRY TERM  DEF DY voL V¢ TED
RET RET
- 0002 0000 0007 0002 0005 0002 0002 | 0002 0000 0006 000l 0005 0002  0.002
a (131)  (012) (247) (046)  (L03)  (0.95) (145 | (0.97) (0.07) (216)  (0.34)  (0.93) (0.95)  (L32)
5 0159 0099 -0.308 0023 -0006 0068 0243 | -0.161 0103 -0270 0022  -0.006 -0.016  0.231
Pl (152 (L15) (210) (0.14) (065 (0.40) (L54) | (155) (L18) (192) (0.13) (068) (0.62)  (149)
5 0000 -0009 0030 -0.009 -0008 -0016 -0.023 | 0027 -0.039 0174 -0005 0006 0068  -0.118
B2 (001) (045 (128) (-046) (-0.39) (0.62) (-L12) | (0.20) (-027) (107) (-0.04) (0.05)  (0.40)  (-0.82)
AdjR? 0019 0009 0027  -0.004 0000 -0.004 0009 | 0020 0008 0027 -0.006 -0001 -0.004  0.005
Panel C.1: Out-of-Sample Forecasting Ability: z =6
Unrestricted : TRYRET; ., . = + B X¢ + ,b’ZVIXt2 +&tter Unrestricted : TRYRETy ¢, , = a + S Xt + fp MOVEt2 + &ty
Restricted : TRYRET ¢, , =a + S Xt + &t t4r Restricted : TRYRETy ., =a + S Xt + &t t4r
Lag HJ Lag HI
TRY TERM  DEF DY voL Mowe? TED | TRY TERM  DEF DY voL V¢ TED
RET RET
RMSE 1009 1007 1000 1010 1007 1005 1002 | 1010 1011 1002 1007 1009 1007  1.005
p-(\t/)al 0479 0123 0058 0121 035 0147 0096 | 0453 0202 0106 0247 0320 0271 0217
p(-|\=/§| 0876 0518 0061 0740 0387 038 0142 | 0733 0878 0152 0520 0846 0612 0352
Panel D: In-Sample Forecasting Ability: = 12
TRYRET 147 = & + By X¢ + BNVIXE + &1 p4r TRYRET, 147 = & + A1 X¢ + BaMOVE? + & 47
Lag HJ Lag HJ
TRY TERM  DEF DY voL Mowe? TED | TRY TERM  DEF DY voL V¢ TED
RET RET
- 0002 0000 0006 0002 0004 000l 0002 | 0001 0000 0005 000l 0006 0001 0010
a (L93) (0.27) (307) (064) (098)  (0.84) (L70) | (L01)  (0.00) (265)  (0.44) (159)  (0.84)  (2.16)
5 0414 0076 0263 0004 -0003 0114 0084 | 0416 0074 -0242 -0007 0208 -0.016 -0.024
Pl (a75) (125) (248) (003 (050) (097) (0.80) | (5.04) (L18) (278) (0.05) (132) (0.2 (-0.3)
5 0007 -0.006 0028 -0.006 -0005 -0016 -0.011 | 0.02 0016 0204 0046 -0.054 0114  -0.215
50)  (-03 130) (0. 032) (082 (0.71) | (L. 15 .05 43)  (-0.21 97)  (-0.85
P2 0 0.36 0.36 03 0.8 0 06 0 2.0 0 0.2 0 0.8
AdjR? 0160 0015 0049  -0.005 -0.002 0001 -0001 | 0167 0014 0058 -0.004 0041 0001  0.002
Panel D.1: Out-of-Sample Forecasting Ability: r = 12
Unrestricted : TRYRET; ¢, . = + S X + ﬁZVIth +&ttar Unrestricted : TRYRET; 1, = a + f1 Xt + B MOVEt2 +étter
Restricted TRYRETt tHr = Q + ,B]_Xt + & t+r Restricted :TRYRETM_H- =a+ ﬁlxt + & t+r
Lag HJ Lag HJ
TRY TERM  DEF DY voL Move? TED | TRY  TERM  DEF DY voL V¢ TED
RET RET
RMSE 1020 1069 1027 1028 1050 1034 1043 | 1004 1018 0995 1007 1006  0.995  1.004
p'(‘t’)a' 0172 0369 0228 0140 0430 0248 0317 | 0040 0902 0025 0194 0121 0018 0076
p('":’;' 0970 1000 0979 01000 1000 0999 1000 | 0314 0963 0009 0832 0638 0006 0222
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Table A.4 Out-of-Sample HML Forecasting Power of VIX? and MOVE? against

Alternative Standard Predictors, May 1988-June 2017.

Panel A: In-Sample Forecasting Ability: z = 1

2
HMLt 11, =+ B X¢ + BVIXE + 6t par

2
HMLt t4r =+ 1 Xt + foMOVE( + 614,

Lag

HJ

Lag

HJ

2 2
HML TERM DEF DY VOL Move TED HML TERM DEF DY VOL Vix TED
A 0.006 0.007 0.001 0.013 0.022 0.008 0.009 0.007 0.007 0.008 0.012 0.024 0.008 0.009
a (301)  (140) (0200 (L61) (276) (219) (384 | (1.84) (L15) (L25) (132) (265 (219)  (221)
5 0156 0015 0355 -0.284 -0.026 -0118 -0522 | 0167 0071 -0.011 -0201 -0.028 -0.079  -0.633
Bl @se @0 (116 (082 (196 (220) (L2d) | (273) (0.3  (0.04) (058 (203 (0.19) (-L47)
A 0112  -0126 0471 0124 -0119 -0079 -0.109 | 0535 -0.615 -0582 -0537 -0572 -0.118  -0.409
B2 (-291)  (-319) (-385) (-3.07) (-3.00) (-0.19) (-2.53) | (-1.53) (-1.62) (-1.66)  (-1.43) (-1.69)  (-2.20)  (-1.18)
AdjR® 0047 0022 0027 002 0033 0023 0032 | 0036 0009 0008 0010 002 0023 0019
Panel A.1: Out-of-Sample Forecasting Ability: = 1
Unrestricted : HMLy ;=@ + B Xq + BVIXE + 6 g4c Unrestricted : HMLy ., = & + 81 X¢ + oMOVEE + 1.1
Restricted : HMLt . =a+ B Xt + &4 p Restricted : HMLy ¢y, =+ S Xt + & 14r
Lag HJ 2 Lag HJ o
HML TERM DEF DY VOL Move TED HML TERM DEF DY VOL Vix TED
RMSE 099 0991 0989 0992 0993 1005 0998 | 1000 0998 0997 1000 1001 1005  1.002
p'(‘t’)al 0062 0040 0049 0044 0461 0846 0127 | 0100 0083 0087 0110 0471 0851 0278
p("F’;" 0033 0008 0020 0013 0365 0722 0101 | 0096 0064 0082 0106 0476 0728  0.304
Panel B: In-Sample Forecasting Ability: z = 3
2 2
HMLttor =+ B Xt + BVIXE + 6 pir HMLity =a+ 1 Xt + foMOVEL + 6t 14,
Lag HJ 2 Lag HJ o
HML TERM DEF DY VOL Move TED HML TERM DEF DY VOL Vix TED
. 0006 0007 -0002 0012 0021 0006 0008 | 0006 0005 0005 0010 0024 0006  0.006
a (273)  (141)  (-0.48)  (1.49)  (2.96) (1.70)  (358) | (1.39)  (0.95)  (0.81)  (1.14)  (2.68)  (1.70)  (1.61)
5 0091 0003 0519 0248 -0.025 0090 -0494 | 0118 0045 0083 -0187 -0028 -0.124 -0.658
PL @i @0y @25) (015 (2200 (026) (L95) | (L12) (023 (043 (057) (229) (278) (-2.16)
P -0.110 -0.116 -0.182 -0.115 -0.109 -0.124 -0.098 -0.435 -0.464 -0.500 -0.399 -0.425 0.090 -0.232
P2 (-2.35)  (-2.68)  (-4.20) (-2.66) (-2.61) (-278)  (-252) | (-1.08) (-1.15) (-1.29)  (-0.99) (-1.18)  (0.26)  (-0.68)
AdjR? 0060 0052 0076 0059 0076 0052 0071 | 0027 0014 0014 0017 0043 0052  0.038
Panel B.1: Out-of-Sample Forecasting Ability: z = 3
Unrestricted : HMLy ., ; = + B X¢ + BVIXE + g4 Unrestricted : HMLy ¢ =&+ B X; + loMOVE + &y,
Restricted : HMLt ¢, =a + B Xt + & 41 Restricted : HMLt ¢, , =a + S Xt + &t 117
Lag HJ ) Lag HJ .o
HML TERM DEF DY VOL Move TED HML TERM DEF DY VOL Vix' TED
RMSE 0.988 0.976 0.964 0.973 0.981 0.990 0.992 0.999 0.997 0.993 1.000 1.003 1.004 1.003
p'(‘t’)a' 0020 0013 0009 0002 0021 0024 0018 | 0045 0033 0010 0010 0054 0197 0112
p(_l\:/;il 0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.036 0.015 0.000 0.010 0.115 0.445 0.169
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Table A.4 (continuation). Out-of-Sample HML Forecasting Power of VIX? and MOVE? against
Alternative Standard Predictors, May 1988-June 2017.

Panel C: In-Sample Forecasting Ability: 7 =6

2 2
HMLtyr =a+ B Xt + BoVIXE + &ty r HML t17 = a + S Xt + BpMOVES + &t 447

Lag

HJ

Lag

HJ

i TERM  DEF DY voL Mo TED | B TERM  DEF DY voL V¢ TED
. 0004 0004 -0005 0008 0018 0004 0005 | 0003 0003 -0.000 0007 0018 0004  0.004
a (198)  (0.93) (119) (L0L) (271) (129) (245) | (L09)  (0.72)  (-0.02) (0.86) (259  (1.29)  (L25)
; 0062 0005 0492 0177 -0025 0038 -0393 | 0075 0024 0228 -0152 -0.026 -0.057 -0.479
A (051) (0.03) (261) (056 (2.30) (0.13) (-1.63) | (0.66)  (0.15)  (L44) (048 (-2.32) (-1.35)  (-1.91)
5 0050 0053 -0116 -0.052 -0.046 -0.057 -0037 | -0.192 -0216 -0.354 -0171 -0.182 0038  -0.042
B2 (143) (158 (348) (149) (132) (135 (105) | (070) (082 (125 (063 (079 (013  (0.18)
AdjR® 0019 0016 0055 0022 005 0016 0032 | 0007 0001 0013 0006 0046 0016 0023
A -0l- i ili T =
Panel C.1: Out-of-Sample Forecasting Ability: 6
Unrestricted : HMLy gy =@ + B X + SVIXE + 6 14r Unrestricted : HMLy . =+ B X; + SoMOVEZ + 61, ¢
Restricted : HMLt,t+T = 0,’+ﬁlxt +gt,t+‘l' Restricted : HMLI,t+‘L' =a +ﬂ1Xt +gt,t+‘l'
HL&QL TERM  DEF DY V%JL Move?  TED H",Slgl_ TERM  DEF DY vlgl_ Vix? TED
RMSE 1011 0996 0980 0996  1.007 1012 1015 | 1006 1006 0996 1006  1.004 1008  1.006
p'(‘t’)a' 0129 0037 0001 0008 0048 0117 0113 | 0170 0064 0021 0133 0053 0624 0231
p("F’;"' 0929 0014 0000 0000 0599 0758 0973 | 0522 0397 0008 0770 0207 0704  0.298
Panel D: In-Sample Forecasting Ability: 7 = 12
2 2
HMLg (= a+ B1X¢ + BVIX{ + gy, HMLi ¢, =a+ /1 Xy + BoMOVES + 611,
HLISIgL TERM  DEF DY vT)JL Move?  TED HL,\‘;IQL TERM  DEF DY V%JL Vix? TED
. 0003 0002 -0003 0006 0012 0002 0003 | 0002 000l 0000 0005 0012 0002  0.002
o (186) (048) (-0.75) (0.91)  (2.45) (112) (205 | (L03) (0.31)  (0.00) (0.76)  (242) (L12)  (0.86)
; 0020 0074 0315 -0135 -0016 0109 -0215 | -0.022 008L 0136 -0.138 -0017 -0.036 -0.312
BL 017y (059 (199 (049) (194 (054) (122) | (013 (0.63) (106) (-049) (1.96) (-117) (-L51)
5 0027 0026 -0067 0025 -0022 -0.03% -0016 | 0050 -0079 -0.137 -0013 0031 0109  0.077
B2 (128) (127) (253 (L07) (093 (L17) (067) | (0.35) (0.57) (083 (0.09) (025 (054  (0.50)
AdjR® 0004 0011 0033 0010 003 0006 0010 | -0.005 0003 0002 0001 0030 0006 0008
Panel D.1: Out-of-Sample Forecasting Ability: = 12
Unrestricted : HMLy ¢, =a+ B Xt + /32VIXt2 +étter Unrestricted : HMLy ¢, - = o+ By Xy + ﬁZMOVEt2 téttr
Restricted : HMLtt, - = o+ By Xt + & 141 Restricted : HMLt ¢, =+ B Xt + &t 147
HLQQL TERM  DEF DY V"('JJL Move?  TED HLQQL TERM  DEF DY V%JL Vix? TED
RMSE 1013 0999 0999  1.006  1.020 1013 1023 | 1010 1003 1005 1006 1019 1003  1.007
p'(‘t’)a' 0100  0.04 0041 0030 0114 0095 0102 | 0464 0025 0120 0391 0505 0123  0.410
p('l‘:’;" 0934 0000 0025 0558 0964 0963 0985 | 0866 0100 0605 0570 1000 0142  0.771
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Table A.5 Out-of-Sample BAB Forecasting Power of VIX? and MOVE? against Alternative
Standard Predictors, May 1988-June 2017.

Panel A: In-Sample Forecasting Ability: 7 = 1

2 2
BABt t1r = + B Xt + BVIX{ + 6t r BABt 14, = @+ 1 Xt + foMOVE + 6114,
Lag HJ ) Lag HJ -,
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
. 0017 0012 0003 0024 0051 0016 002 | 0014 0009 0017 0019 0052 0016 0016
122 (5.97) (259 (0.38)  (2.31) (455 (3.88) (5.63) | (372)  (L.79) (265  (1.86)  (4.79)  (3.88)  (4.61)
p 0.098 0.360 0.877 -0.251 -0.058 0.430 -0.802 0.120 0.453 -0.084 -0.137 -0.064 -0.300 -1.211
PL dasy  @75)  @75)  (060) (329) (084 (154) | (L37)  (205) (031) (031) (364) (d8k) (242)
5 0245 -0259 0371 0258 -0.244 -0.300 -0.228 | -0735 -1031 -0.811 -0.828 -0.825 0430  -0.484
B2 (4se) (509) (470) (428) (350) (484 (352 | (231) (315) (260) (230) (233 (084  (1.30)
AdjRZ 0083 0087 0093 0075 0108 0076 0083 | 0028 0034 0014 0014 0056 0076  0.035
Panel A.1: Out-of-Sample Forecasting Ability: z = 1
Unrestricted : BABy ¢, =+ Ay X¢ + SVIXE + & gar Unrestricted : BABy ¢, = a + A X¢ + SyMOVEL + 61,
Restricted : BABy ¢, = + S Xt + &t t4r Restricted : BABtt,; =a+ B Xt +ét 147
Lag HJ 2 Lag HJ o
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
RMSE 0982 0977 0973 0971 0991 0989 1005 | 1001 0993 0999 0999 1004 1003 1006
p'(‘t’)a' 0005 0003 0016 0002 0588 0160 0178 | 0138 0059 0150 0088 0602 0911  0.496
p(“F’;*' 0000 0000 0001 0000 0478 0053 0332 | 0150 0024 0147 0075 0647 0856  0.697
Panel B: In-Sample Forecasting Ability: z = 3
2 2
BABt t1.r =& + S1 Xt + BVIX{ + 6t tr BABy 14, = @+ 1 Xt + foMOVES + 6114,
Lag HJ ) Lag HJ -,
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
. 0012 0007 0002 0016 0048 0013 0015 | 0009 0006 0014 0013 0049 0013 0013
@ (332)  (1.50)  (0.73)  (1.64)  (452)  (414)  (430) | (2.66) (1.31) (2.75)  (1.41)  (4.88)  (4.14)  (4.67)
; 0209 0411 0540 -0.091 -0059 0185 -0585 | 0.245 0485  -0.059 0006  -0.063 -0.189  -0.828
PL Gos) (19 (34 (023) (343 (04 (158) | (230) (241) (025 (0.02) (359) (232 (219)
P -0.139 -0.171 -0.240 -0.171 -0.155 -0.189 -0.148 -0.353 -0.810 -0.592 -0.631 -0.579 0.185 -0.366
B2 (-211)  (-313) (-276) (-2.68) (-2.07) (-2.32) (-212) | (-1.32) (-3.30) (-2.20) (-2.20) (-2.07)  (0.41)  (-1.29)
AdjR?Z 0118 0119 0094 0077 0164 0078 0089 | 0074 0076 0019 0018 0118 0078  0.042
Panel B.1: Out-of-Sample Forecasting Ability: z = 3
Unrestricted : BABy ¢, , =a + S X¢ + ,6?2VIXt2 +étter Unrestricted : BAB ¢, . =a + f X¢ + ﬁZMOVEt2 +éttyr
Restricted : BABy ¢, =+ B Xt + &t t4r Restricted : BABt ¢, =a + B Xt +ét 47
Lag HJ ) Lag HJ -,
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
RMSE 1018 0992 1003 0987 1038 1021 1046 | 1007 0987 1003 0998 1008 1005  1.009
p—(\t/)al 0.106 0.022 0.061 0.019 0.082 0.144 0.197 0.352 0.004 0.085 0.013 0.122 0.113 0.293
p('":’;*' 0998 0001 0203 0000 0999 0991 1000 | 0611 0000 0162 0011 0485 0261 0939
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Table A5 (continuation). Out-of-Sample BAB Forecasting Power of VIX? and MOVE? against

Alternative Standard Predictors, May 1988-June 2017.

Panel C: In-Sample Forecasting Ability: 7 =6

BABit1, =a+ /i X¢ + BNIXE + Ettar

BABit,, =a+ i Xt + S2MOVEF + Etter

Lag HJ

Lag HJ

2 w2
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
. 0009 0005 0005 001l 0048 0011 0013 | 0006 0004 0011 0008 0048 0011 0011
122 (3.10)  (1.29)  (0.80)  (1.24)  (5.14)  (3.89)  (4.86) | (1.89)  (0.98)  (2.33)  (0.95) (5.31)  (3.89)  (4.05)
p 0.264 0.372 0.406 0.068 -0.063 0.265 -0.726 0.307 0.419 -0.056 0.123 -0.066 -0.143 -0.962
P Gs2)  (oe)  (L15) (018 (403 (059 (219) | 290) (221) (028 (080) (408 (236 (281)
5 0082 -0119 0171 0119 0101 -0.143 -0088 | -0076 -0514 -0.318 -0.384 -0.29L 0265  -0.037
B2 (183 (353 (277) (303) (189) (236 (180) | (0.30) (211) (120) (182) (115 (059  (-0.14)
AdjRZ 0121 0111 0072 0057 0209 0060 0085 | 0094 0073 0006 0008 0173 0060  0.055
Panel C.1: Out-of-Sample Forecasting Ability: z =6
Unrestricted : BABy ¢, =+ Ay X¢ + SVIXE + & gar Unrestricted : BABy ¢, = a + A X¢ + SyMOVEL + 61,
Restricted : BABy ¢, = + S Xt + &t t4r Restricted : BABtt,; =a+ B Xt +ét 147
Lag HJ 2 Lag HJ o
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
RMSE 1014 0980 0993 0983 1027 1010 1037 | 1007 0994 1002 1000 1009 1004  1.007
p'(‘t’)a' 0125 0024 0039 0006 0047 0032 0096 | 0266 0003 0108 0035 008 0107 0361
p(“F’?' 0998 0000 0004 0000 0997 0758 0998 | 0547 0000 0080 0035 0659 0266 0619
Panel D: In-Sample Forecasting Ability: 7 = 12
2 2
BAB 47 = + S1X¢ + BVIXE + &t p4r BABy 14, = @+ 1 Xt + foMOVES + 6114,
Lag HJ ) Lag HJ -,
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
. 0009 0003 0005 0007 0044 0009 0012 | 0006 0002 0010 0005 0044 0009  0.09
@ (283) (069 (0.85) (0.89) (5.47) (357)  (451) | (L59)  (0.56)  (2.16)  (0.63)  (555) (357)  (3.40)
7 0157 0436 0370 0190 -0.059 0263 -0957 | 0.208 0473  -0.024 0230 -0061 -0114  -1214
PL do2) (8 (42 (©56) (428 (069 (253 | (132) (289) (013 (062 (431) (2.20) (348)
P -0.071 -0.090 -0.138 -0.091 -0.074 -0.114 -0.049 -0.054 -0.416 -0.215 -0.287 -0.175 0.263 0.160
/52 (-1.75)  (-3.38) (-283) (-2.85) (-1.58)  (-2.20)  (-1.12) | (-0.21) (-2.06) (-0.85) (-1.21) (-0.81)  (0.69)  (0.72)
Adj R? 0.070 0.162 0.067 0.054 0.248 0.054 0.112 0.041 0.131 0.002 0.010 0.216 0.054 0.102
Panel D.1: Out-of-Sample Forecasting Ability: = 12
Unrestricted : BABy ¢, , =a + S X¢ + ,6?2VIXt2 +étter Unrestricted : BAB ¢, . =a + f X¢ + ﬁZMOVEt2 +éttyr
Restricted : BABy ¢, =+ B Xt + &t t4r Restricted : BABt ¢, =a + B Xt +ét 47
Lag HJ ) Lag HJ -,
BAB TERM DEF DY VOL Move TED BAB TERM DEF DY VOL Vix TED
RMSE 1009 0973 0977 0991 1016 0992 1038 | 1006 0995 1004 1000 1011 1002  1.004
p—(\t/)al 0.046 0.004 0.026 0.094 0.070 0.013 0.070 0.067 0.005 0.086 0.112 0.189 0.041 0.057
p("‘:’;*' 0818 0000 0000 0010 0977 0000 1000 | 0553 0002 0159 0110 0984 0101  0.183

Tables A.1 through A.5 show the out-of-sample forecast accuracy of either VIX? or MOVE?, comparing
the unrestricted model that contains either VIX2 or MOVE2 and the additional standard predictor with the
restricted model that includes only the standard predictor where this predictor can also be VIX? or
MOVE? RMSE is the relative mean-squared forecasting error that compares the mean-squared
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forecasting error of the restricted model and the mean-squared forecasting error of the unrestricted model.
The p-value (t) and p-value (F) are two statistics to test the equal forecasting ability of the two models
associated with expressions (28) and (30). They are obtained by an efficient bootstrap method for
simulating asymptotic critical values. We always control on individual basis for the lagged of the
dependent variable, TERM, DEF, DY, the HJ volatility bound of Nieto and Rubio (2014) and TED. We
report the t-statistic from Newey-West/ HAC standard errors.
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